切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1383阅读
    • 0回复

    [分享]Zemax & Lumerical | 二维光栅出瞳扩展系统优化 [复制链接]

    上一主题 下一主题
    离线ueotek
     
    发帖
    197
    光币
    446
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2023-05-26
    简介 vg-Ah6BC{  
    2q NA\-0i>  
    本文提出并演示了一种以二维光栅耦出的光瞳扩展(EPE)系统优化和公差分析的仿真方法。  [HEljEv  
    q4EOI  
    在这个工作流程中,我们将使用3个软件进行不同的工作 ,以实现优化系统的大目标。首先,我们使用 Lumerical 构建光栅模型并使用 RCWA 进行仿真。其次,我们在 OpticStudio 中构建完整的出瞳扩展系统,并动态链接到 Lumerical 以集成精确的光栅模型。最后,optiSLang 用于通过修改光栅模型来全面控制系统级优化,以实现整个出瞳扩展系统所需的光学性能。 @*9c2\"k  
    ;!+-fn4C  
    本篇文章将分为上下两个部分。(联系我们获取文章附件) w+wg)$i  
    fTOGW`s^  
    概述 03/mB2|TF(  
    V0<g$,W=  
    我们将首先在 Lumerical 和 OpticStudio 中构建仿真系统,它们是动态链接的。 8\X-]Gh\^  
    `0_,>Z  
    然后,OpticStudio 通过 Python 节点链接到 optiSLang 进行优化,如图1所示。 AI^!?nJ%'  
    ${h1(ec8  
    |iA8aHFU  
    UhKd o  
    图1 Lumerical 通过动态链接到 OpticStudio,OpticStudio 通过 Python 节点链接到 optiSLang,优化由 optiSLang 控制。 kaT  !   
    hh-a+] c0  
    如图 2 所示,EPE 系统包括两个用于耦入和耦出的光栅。耦出光栅分为几个区,如左侧所示。每个区都将经过优化,以具有不同的光栅形状。右图显示了光在 k 空间中的传播的变化情况。 7>E>`Nc6  
     :I{9k~  
    (e_z*o)\T  
    .iC!Ttr  
    图 2 光栅布局图以及光线在K空间的传播 3#0y.. F  
    .(&w/jR  
    第 1 步:系统设置 (Lumerical) b8 E{~z  
    x[y}{T  
    打开附件中的 ZAR 文件时,两个光栅文件会被提取到设置的路径中。第一个光栅如图 3 所示,它是耦入光栅中使用的二元光栅。该光栅是固定的,在优化过程中不会改变。 G=F_{z\}  
    <])]1r8  
    9sN#l  
    ``-pjD(t  
    图 3 耦入光栅结构为二元光栅。 Sy/Z}H  
    JvsL]yRT  
    第二个 .fsp 文件如图  4 所示,它是一个具有 7 个变量的平行四边形柱体。在优化期间,耦出中的每个区都将使用不同的变量组合集进行优化  。有关优化设置的更多信息将在优化设置部分中进行说明。 mKqXB\<  
    Zq~Rkx  
    Hz"FGwd  
    vqAEF^HYry  
    图 4 耦出光栅中的结构为平行四边形支柱。 ~: fSD0  
    8OMMV,QF  
    这两个.fsp文件都是用动态链接的形式在 OpticStudio 中用于模拟完整的EPE系统。 :}R,a=N  
    m5o$Dus+?'  
    第 2 步:系统设置(OpticStudio) >"+ ho  
    ["#H/L]3  
    如图5所示,在该系统中,准直光束入射到耦入光栅上,通过波导传播,并与第二个光栅耦合。眼盒位于第二个光栅的较远部分。优化的目标是优化眼盒接收的均匀性和总功率。 UcKVL zKs  
    lWn}afI  
    Cw"[$E'J  
    !' 0PM[  
    图 5 初始EPE系统和眼盒辐照度。  "D'rsEh  
    cMrO@=b;  
    在附件中有一个 OpticStudio 中建立的整个EPE系统的 zar 文件。如图  6 所示,仅构建了第二个光栅一半的区域。这是因为系统具有对称性。从图 7 可以看出,探测器的参数镜像设置为  1,这意味着在光线追迹期间,将始终对-x和+x部分进行镜像。这样一来,我们可以只用一半的光线获得相同的模拟结果。 qj/Zk [  
    AmZW=n2^  
    lCgzQZ  
    po(pi|  
    图 6 OpticStudio 中的 EPE 系统设置。 Fi'ZId  
    |~ytAyw  
    *8_Dn}u?Jx  
    O+|ipw*B%  
    图7 探测器的镜像参数设置为 1,这意味着该探测器在 x 方向上镜像。 :7i x`C2  
    Vh1y]#w  
    可以看出,  系统中的所有光栅物体都已使用动态链接 DLL 进行设置,如图  8所示。 %JH/|mA&|  
    !x:{"  
    ~ MsHV%  
    DgK*> A  
    图 8 为  EPE 系统中的光栅加载动态链接 DLL。 ($!uBF-b  
    lQiw8qD  
    第3步:优化设置(optiSLang) (?g+.]Dt,  
    +p`BoF9~  
    3-1.Python 用于评估系统 Y<jX[ET!  
    V7}'g6X  
    附件中包含了一个 python 文件 EPE_2D_for_optiSLang.py,用于将 optiSLang 链接到OpticStudio。使用python代码将  Ansys optiSLang 附带的优化器与求解器Ansys Zemax OpticStudio + Ansys Lumerical 链接非常有用。优势在于可以在每个优化周期中进行数据的预处理跟后处理,灵活性非常高。本章节会对代码结构进行解释。 Wx8:GBM$2  
    3AglvGK7{  
    代码的基本结构首先由 OpticStudio 中的按钮生成,如图  9 所示。 MkHkM  
    rT=C/SKP  
    图 9 生成 Python 交互式扩展代码的样板。 HI{h>g T  
    d#XgO5eyO  
    ^eyVEN  
    ]R>NmjAI  
    另外几个模块被导入到样板中。模块 numpy,scipy 用于对来自眼盒的辐照度数据进行后数据处理。模块matplotlib用于在眼盒上绘制和导出辐照度以供以后查看。导入 time 和 random 模块,以便计时器跟踪计算时间。 >tPf.xI|l  
    vQp'bRR  
    EJ>rW(s  
    通过尝试读取变量 OSL_WORKING_DIR,我们可以知道这个 Python 代码是由  optiSLang 调用还是手动调用。当 optiSLang 调用 Python代码时,将创建一些称为环境变量的变量来传递一些 optiSLang 信息。即使这些变量未在 Python 文件中定义,当 optiSLang 调用代码时,它们是可用的。 k6J&4?xZ  
    Q"D5D rj  
    /qJCp![X  
    )HC/J-  
    在这个 Python 代码中,有32个变量,如 clen1、h2、rot4、w1 和 power,用于优化,需要由 optiSLang 定义。我们会将这些变量设置为 optiSLang 中的参数,在灵敏度分析或优化时,optiSLang将自动改变它们的值。如果我们不是从 optiSLang 直接运行这个 Python 代码,那么这些变量的值将是常量,如下面的代码所示。 2 S~(P  
    }!{R;,5/n  
    \NMqlxp2  
    x`FTy&g  
    如图10所示,每个区的光栅参数是通过预设的4个角的数据通过插值来确定的。其中 ν 是 dC、dR、dL、θC、θR、θL 、h ,n 是 1,2,3,4,对应于 4 个角。通过这个公式,每个区上的7个光栅参数可以通过具有一定权重(wn)和非线性值(p)的4个角的参数来控制。 +Adk1N8  
    iqdU?&.;  
    W!R0:-  
    @"BhKUoV$K  
    \+nV~Pi"A  
    a] 7g\rg)  
    图 10  从 4 个角插值的各个区的参数计算。 mj?Gc  
    /g. c( -#]  
    optiSLang 按照预定义的优化算法改变这些参数。不同的参数值被设置到 python 代码中,这将进一步设置 OpticStudio 中每个光栅块的参数。在这个过程中,Python代码扮演着将这些变量转换为 OpticStudio 中精确参数的工作。只有当我们使用 optiSLang 而不是 OpticStudio 中的内置优化器优化系统时,这种预数据处理才有可能。通过这种方式,optiSLang 可以根据一些未直接暴露在OpticStudio UI中的虚拟或高级变量来优化系统。 7V8k =  
    ,`RX~ H=C  
    设置参数后,我们使用以下代码段追迹光线。 cD6^7QF  
    j{r@>g;3  
    )XavhS~Ff  
    99`w'Nlk  
    使用 optiSLang 优化系统的另一个好处是数据后处理。在这个优化过程中,我们不会直接优化眼盒上的辐照度分布。我们首先使用瞳孔函数对辐照度分布进行卷积,如图11所示,然后将优化目标设置为该卷积结果的均匀性。这个结果的x和y轴可以解释为人眼在眼盒中的偏移。z轴是人眼看到的平均辐照度。 }eW<P079  
    54Rp0o tv  
    +v 3: \#  
    ^+CWo@.  
    {|hg3R~A  
    d5>&, {o7N  
    图 11 使用瞳孔函数对辐照度分布进行卷积. j`"!G*Vh  
    vpf.0!zh  
    根据卷积结果,我们可以计算对比度 、总功率和均匀性,如下所示。 \?R#ZxP@  
    1++g @8  
    \eNB L[  
    Q.$Rhjb  
    这些标准的代码定义如下。在这种情况下,我们主要希望针对 Contrast 和 Total Power 进行优化。均匀性的功能类似于对比度,两者都希望眼盒上的辐照度均匀。尽管它们用于相同的目标,但它们使用不同的定义,在这里我们考虑两者。 HV)aVkr/&  
    8U(o@1PT  
    V4NQcy? H  
    =k.%#h{  
    Python 代码的最后一部分,如下所示,绘制了眼盒辐照度的结果及其卷积结果。然后导出图片。这对于用户直接在 optiSLang 后处理中检查每个优化系统的辐照度分布非常有用。 ]vB\yQE  
    =?0v,;F9|  
    _~;%zFX  
    2b"DkJj'  
    进一步的设置详解我们会在后续的文章中,进行介绍。
     
    分享到