|
|
这篇文章介绍了什么是双折射现象、如何在OpticStudio中模拟双折射 (birefringence)、如何模拟双晶体的双折射偏振器以及如何计算偏振器的消光比。 `l,=iy$ 4<._)_m 什么是双折射现象 WF\
hXO 一般的光学材料都是均匀的各向同性的,也就是说无论光从哪个方向穿过材料,其折射率都保持一致。对于单轴材料来说,例如方解石 (Calcite),其晶轴定义了材料的对称轴。这类材料对光线的偏折能力随入射光的偏振态及入射光与晶轴的夹角不同而不同。因此对于任意一束光,两个正交的偏振态下可能存在不同的折射角。这种现象称为光的双折射。 AujvKQ( 光线在双折射材料中的折射总是遵循斯涅耳定律 (Snell`s Law) 的,但是材料中的有效折射率与入射光的偏振态和入射方向与晶轴夹角相关。其中“寻常光 (Ordinary)”的折射角由下式定义: ^]c/hb|X uU(G &:@ BE. v+'c" )R$+dPu> 其中no为寻常光的折射率,这是斯涅耳定律的一般形式。“非寻常光 (Extraordinary)”的折射角由下式定义: x)0g31 49 ModwJ
w N1$lG?
)+ su.hmc 该式同样遵循斯涅耳定律,但是此时的折射率是角度θw的函数,该角度表示晶轴向量a和折射光波矢k的夹角。 Q!K@ TP' 光线向量S指向能量传播方向。在普通材料中,光线向量S与波矢k为同一向量,此时我们使用k表示。但在双折射材料中,光线向量S与波矢k的方向存在较小的夹角,因此需要单独考虑。其中向量S和k与晶轴向量a共面且满足: :q=u+h_ LX),oR e^kccz2f nN" Y~W^k 非寻常光的有效折射率由下式定义: }M?\BH& *O-1zIlp hR,VE'A
&.z: i5&o! 其中ne为非寻常折射率。 L6`(YX.: WccTR
aq 双折射输入面 {a`t1oX( #(&!^X3 准确的进行双折射光线的追迹要比追迹普通光线复杂的多:我们必须分别考虑寻常光和非寻常光的折射率和波矢方向。因此双折射光线追迹功能只在光线入射到双折射输入 (Birefringent-In) 表面时开始执行,在双折射输出 (Birefringent-Out) 表面结束。并且在双折射输入和双折射输出表面之间只允许存在坐标间断 (Coordinate Break) 表面。 NIufL
}6\ &ywAzGV{s 在寻常光追迹中,光线向量S和波矢k的方向一致,因此OpticStudio使用寻常光的波矢k的分量来定义光线的方向余弦。 P5s'cPX z=1 J{] 在非寻常光追迹中,k、S和晶轴向量a处于同一平面但不重合,因此使用S的分量定义光线的方向余弦。 %T@ 3-V_ hJY= ) 以下为模拟一块方解石晶体双折射的示例,其中虚线表示晶轴: yO Ed8 ZN>oz@jY JU+Uzp yf`Nh 入射光线入射到方解石晶体上并分裂为两个方向的光线。其中寻常光线产生正常的折射,由于入射表面为平面,因此光线没有发生偏折。非寻常光线则产生双折射,因此即便光线正入射平面也产生了偏折。 BwtjTwd y1R53u`;L 下图为OpticStudio中有关双折射晶体的设置: qN((Xz+AZE 3wZA,Z
i zJa`K =Q|_v} 光线在入射到双折射输入面之前都是按照正常情况进行光线追迹。双折射输入表面与标准表面一样(可定义为圆锥面),此时材料使用的是CALCITE,OpticStudio将使用该材料折射率进行寻常光光线追迹。OpticStudio将在相同的材料库中寻找材料名为CALCITE-E的材料,并使用该材料折射率进行非寻常光光线追迹。通过使用两种实际材料,追迹过程可以考虑材料的所有属性(透过率、色散和热膨胀属性等)。
'o=`1I ]la8MaZ< |