Rq4;{a/j
*MJm:
p l)":}/)
简介 <y 4(!z" *4O=4F)x 激光系统常使用一个称为空间滤波器的小孔。通过去除
光束中的高阶模和噪声,空间滤波器是一种用于提高激光质量的技术。为了在FRED中准确
模拟激光通过一个空间滤波器,光在通过滤波器之后光场的重新合成是非常重要的。这样做将会精确的模拟在孔径上的裁剪。在本篇文章中,将会阐述Gabor分解的光合成技术。
}"Y<<e<z: Bz+oMN#XJ 相干光的高斯子束模型 .Xg.,kW 0Q3U\cDr 通过使用一个称为高斯光束分解(GBD)的技术,可以在FRED中实现相干光的模拟。光场被分成独立的高斯子束,相互之间是相干传播的。每个子束由一组
光线表示(图1),主光线沿着子束的轴。八个二级光线包括:代表光束腰的四个正交二级束腰光线,和代表光束发散度的四个正交二级发散光线。在光线追迹的过程中,主光线决定了所有二级光线的命运:如果主光线通过了一个孔径,假设,则所有的二级光线必须通过该孔径。这项使用光线来表示高斯子束的技术被称为复合光线追迹。
(qcFGM22U 图1.高斯子束的复合光线表示
zI88IM7/ J_s`G 如果激光在一个空间滤波器处聚焦,则在相干光线追迹中的大多数主光线将会通过孔径。这忽略了剪裁的影响。为了正确的模拟剪裁,在空间滤波平面的光场应该在孔径内重新采样,产生一组新的光线,用于通过系统的进一步传播。
E4#{&sRT aRd~T6I 14μm空间滤波器内的Gabor分解 bC&A@.g{ b[%@3 }E 在FRED中模拟的一个空间滤波系统如图2所示。创建了相干准直的He-Ne激光束。
光源由直径为6mm的椭圆孔径内的21*21条光线组成。光线通过
焦距为52mm的平凸
透镜。空间滤波器放置在焦点上。空间滤波器的直径是基于透镜焦距和光束直径计算而得。
T2{e1 =Z7 FT).$h~+4
x07 = M-WSdG[AJ 通过添加FRED自定义元件(Custom Element)可以创建空间滤波器小孔,它由半径为0.007mm的圆弧曲线描述。在空间滤波器位置处创建了一个1*1的吸收平面。在该平面上指定了一个分析面(64*64μm宽,257*257像素)来收集光场。绘制光场之后,用户需要右键点击并选择相干场操作/应用剪裁到场(Coherent Field Operations / Apply Clipping to Field),选择已经创建好的剪裁曲线。光场现在已经得到了正确的剪裁(图3)。
O7.V>7Y9H 图2.He-Ne激光束的空间滤波器
h*%p%t<