fa++MNf}3 =:&ly'QB& 在高约束
芯片上与亚微米波导上耦合光的两种主要方法是
光栅或锥形耦合器。[1]
9`1O"R/ 耦合器由高折射率比
材料组成,是基于具有
纳米尺寸尖端的短锥形。[2]
4.Q} 1%ZN 锥形耦合器实际上是
光纤和亚微米波导之间的紧凑模式转换器。[2]
d9B]fi} 锥形耦合器可以是线性[1]或抛物线性[2]过渡。
*C5R}9O5 选择Silicon-on-insulator(SOI)技术作为纳米锥和波导的平台,因为它提供高折射率比,包括二氧化硅层作为
光学缓冲器,并允许与集成
电子电路兼容。[2]
>hPQRd
aNScF (a[y1{DLy Gf,` [1] Jaime Cardenas, et al., “High Coupling Efficiency Etched Facet Tapers in Silicon Waveguides,” IEEE Phot. Tech. Lett. VOL. 26, NO. 23, 2380-2382 (2014)
N9jH\0nG [2] Vilson R. Almeida, et al., "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003);
!qv ea,vw 'JCZ]pZ 3D FDTD仿真 xC{qV, :ctu5{"UJ U@HK+C"M| 要
模拟的关键部件是来自参考文献[1]的线性锥形硅波导(160 nm至500 nm宽度变化超过100 um长度,250 nm高度),它埋在二氧化硅波导中(注意:使用的尺寸减小了(1.5 umx1.5 umx105 um),以便达到更快的模拟时间)
Gcdd3W`O 为了精确模拟线性锥形硅波导,锥形的网格尺寸应该要设置密度大一些,因此在这种情况下使用不均匀的网格。
Q?nN!eT 光源在时域中设置为CW( = 1.55 um),在空间域上设置为高斯横向分布,并且位于二氧化硅波导的硅纸尖端。
7uKNd
*% 注意:模拟时间应足够长,以确保稳态结果
ePr&!Tz# 2^y^q2(r \!k1a^ZP n&"B0y cF 仿真结果 ba[1wFmcL &7`^i.fh) X.Rb-@ e4!:c^? 顶视图展示了锥形硅波导的有效耦合。
UaWl6 Y&Vu i>D.!x 底部视图显示了不同位置的模式转换(左:25 um,中间:65 um,右:103 um)
L W[9