切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 955阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    5797
    光币
    23137
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 D=OU61AA  
    AVJF[t,  
    成像示意图
    {Ise (>V  
    首先我们建立十字元件命名为Target u( o@_6  
    wXZ-%,R -D  
    创建方法: )l"0:1Ig  
    x``!t>)O  
    面1 : y%GV9  
    面型:plane 2`},;i~[  
    材料:Air }.hBmhnZmI  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box *PI3L/*  
    dKMuo'H'%  
    _9-Ajv  
    辅助数据: LNg1q1 P3  
    首先在第一行输入temperature :300K, dqkkA/1  
    emissivity:0.1; hlVP_h"z  
    &B.r&K&  
    )N=wJN1  
    面2 : QxkfP%_g  
    面型:plane %z.G3\s0  
    材料:Air q"cFw${  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box zZRqb/20  
    Ky'^AN]  
    L fi]s  
    位置坐标:绕Z轴旋转90度, e}?t[aK4#  
    q+DH2&E'  
    K1hw' AaQ  
    辅助数据: hw7_8pAbh  
    lAGxE-B^a"  
    首先在第一行输入temperature :300K,emissivity: 0.1; {NFeX'5bP  
    3}+/\:q*  
    H z6H,h  
    Target 元件距离坐标原点-161mm; jn7} jWA  
    /}VQzF  
    i" )_M|   
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ufJFS+?  
    xvkof 'Q)  
    b^xf ,`D  
    探测器参数设定: wiVQMgi`  
    F>M$|Sc2  
    在菜单栏中选择Create/Element Primitive /plane i~,k2*o  
    JC#@sJ4az)  
    Za} |Ee  
    X1-s,[j'  
    aw 7f$Fqk  
    JTI m`t"d=  
    元件半径为20mm*20,mm,距离坐标原点200mm。 wv7jh~x(4  
    SUEw5qitB  
    光源创建: TM}F9!*je  
    7^; OjO@8  
    光源类型选择为任意平面,光源半角设定为15度。 K c<z;  
    ZChY:I$<  
    "VeUOdNA>  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 y"hM6JI  
    I>xB.$A  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 "tark'  
    q^cFD  
    W wE)XE  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 A)#sh) }Q  
    w(U/(C7R  
    创建分析面: b[k 1)R"  
    q!TbM"  
    =gn}_sKNE  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 oD7H6\_  
    Id*^H:]C#  
    aC},h   
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 h=tu +pn  
    Psa8OJan  
    FRED在探测器上穿过多个像素点迭代来创建热图 :6/OU9f/R  
    z|<oxF.  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 =tNiIU  
    将如下的代码放置在树形文件夹 Embedded Scripts, ^zJ. W  
    `|w#K28t"  
    gdK/:%u3  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ]mj+*l5  
    O}-7 V5  
    绿色字体为说明文字, 9/M!S[N9  
    >>cd3)b  
    '#Language "WWB-COM" \?^wu  
    'script for calculating thermal image map !S!03|  
    'edited rnp 4 november 2005 ~K96y$ DTE  
    }Yl=lc vw  
    'declarations D.o|($S0  
    Dim op As T_OPERATION XgKG\C=3  
    Dim trm As T_TRIMVOLUME Y/66`&,{  
    Dim irrad(32,32) As Double 'make consistent with sampling /vDF<HVzm  
    Dim temp As Double 'lk74qU$  
    Dim emiss As Double +-\9'Q  
    Dim fname As String, fullfilepath As String I 6YT|R  
    C<t>m_t9  
    'Option Explicit 7 !.8#A':  
     {Yk20Zn  
    Sub Main } XU:DE  
        'USER INPUTS -l@W)?$  
        nx = 31 0|!<|N<  
        ny = 31 &U*J{OP|  
        numRays = 1000 l&Ghs@>Kl  
        minWave = 7    'microns ^6oqq[$  
        maxWave = 11   'microns &i^NStqu  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 ?1:/ 6  
        fname = "teapotimage.dat" 5{0>7c|.  
    8@KFln )[  
        Print "" pf@}4PN}  
        Print "THERMAL IMAGE CALCULATION" 8{fz0H.<?  
    B 9Q. s  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 &jZ|@K?  
     Gy6 qLM  
        Print "found detector array at node " & detnode w00\1'-Kz  
    yO;C3q  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 by]|O  
    d.j'0w"   
        Print "found differential detector area at node " & srcnode So *Wk "  
    7 eQoc2X2  
        GetTrimVolume detnode, trm _L'cyH.cn  
        detx = trm.xSemiApe &9_\E{o%]  
        dety = trm.ySemiApe `ab\i`g9  
        area = 4 * detx * dety ([CnYv  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety AJ` v  
        Print "sampling is " & nx & " by " & ny *tM7>  
    E:4P1,%01+  
        'reset differential detector area dimensions to be consistent with sampling 0 ;_wAk  
        pixelx = 2 * detx / nx $%%>n ^??  
        pixely = 2 * dety / ny N 3yB1_   
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False tP Efz+1N  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 a!y,!EB+Qu  
    Wj j2J8B  
        'reset the source power ,Q=)$ `%  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) JM-ce8U  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" bjPbl2K  
    zt[4_;2Y  
        'zero out irradiance array XBQ<  
        For i = 0 To ny - 1 e9`uD|KAS|  
            For j = 0 To nx - 1 yEUNkZ5^  
                irrad(i,j) = 0.0 >6[ X }  
            Next j .)@tXH=}+  
        Next i &:;;u\  
    TG63  
        'main loop ]fADaw-R  
        EnableTextPrinting( False ) HA9Nr.NqC@  
    t&9as}  
        ypos =  dety + pixely / 2 v*H &F   
        For i = 0 To ny - 1 mfngbFa1  
            xpos = -detx - pixelx / 2 `$V[;ld(mz  
            ypos = ypos - pixely RZ|HwYG  
    wyrI8UY  
            EnableTextPrinting( True ) xZP>g  
            Print i <p^*Ydx  
            EnableTextPrinting( False ) YQ @dl  
    uZo`IKJ  
    mS:j$$]u  
            For j = 0 To nx - 1 c8-69hb?  
    Im?= e  
                xpos = xpos + pixelx "y~muE:.  
    5X`w&(]m  
                'shift source ,qe]fo >  
                LockOperationUpdates srcnode, True Tr+h$M1_Ja  
                GetOperation srcnode, 1, op I mPu}  
                op.val1 = xpos 8|5Gv  
                op.val2 = ypos GX7 eRqz>  
                SetOperation srcnode, 1, op FDVI>HK @  
                LockOperationUpdates srcnode, False  :Hzz{'  
    @.Z[M  
    raytrace *K+jsVDY  
                DeleteRays '&-5CpDUs  
                CreateSource srcnode Mhv1K|4s  
                TraceExisting 'draw ]&C:>  
    ~U"by_  
                'radiometry ]27>a"p59Y  
                For k = 0 To GetEntityCount()-1 k5 aa>6K  
                    If IsSurface( k ) Then ?qg^WDs$  
                        temp = AuxDataGetData( k, "temperature" ) ~aJW"\{  
                        emiss = AuxDataGetData( k, "emissivity" ) S,*{q(   
                        If ( temp <> 0 And emiss <> 0 ) Then A6^p}_  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) [$( sUc(%  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ( zn_8s  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi I&TTr7  
                        End If Wl& >6./{  
    (s}Rj)V[^  
                    End If 2^)D .&  
    t] r,9df'  
                Next k ny12U;'s,  
    r5MxjuOB1  
            Next j HGO#e  
    ydwK!j0y  
        Next i zmrQf/y{R  
        EnableTextPrinting( True ) ^>N8*=y  
    @sc8}"J]#  
        'write out file L6|Hgrj-u  
        fullfilepath = CurDir() & "\" & fname VHXI@UT*  
        Open fullfilepath For Output As #1 NuC-qG#  
        Print #1, "GRID " & nx & " " & ny 6 gj]y^}  
        Print #1, "1e+308" dT5J-70Fl  
        Print #1, pixelx & " " & pixely #4vV%S   
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 m b%C}8D  
    ]b4pI*:$I  
        maxRow = nx - 1 h5L=M^z!>  
        maxCol = ny - 1 |-~b$nUe  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) R%>jJ[4\[  
                row = "" +7| [b  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ^cYStMjpy  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string kQ@gO[hS  
            Next colNum                     ' end loop over columns b;S6'7Jf9  
    8)L'rW{q#  
                Print #1, row Z5((1J9  
    x&at^Fp  
        Next rowNum                         ' end loop over rows qBT_! )h   
        Close #1 an3~'g?  
    fv|]= e  
        Print "File written: " & fullfilepath aXMv(e+  
        Print "All done!!" K@B" ]6  
    End Sub C">`' G2  
    o^HNF+sm  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: :1:3Svb<Y  
    d; 9*l!CF  
    7=}6H3|&  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 0CT}DQ._^N  
      
    z)}3**3'y  
    ,mBZ`X@N  
    打开后,选择二维平面图: {}V$`L8  
    BbFa=H.  
     
    分享到