-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-04-29
- 在线时间1766小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 0w}{(P; *vs~SzF$ 成像示意图
p
JX, n 首先我们建立十字元件命名为Target t>oM%/H R=86w_ 创建方法: K~JC\a\0 C$y fMK,,N 面1 : rgn|24x 面型:plane Gx|Dql 材料:Air V*uEJ6T 孔径:X=1.5, Y=6,Z=0.075,形状选择Box b,vL8* u[J7Y !vrnoFVu 辅助数据: cJV!>0ua 首先在第一行输入temperature :300K, 4ioNA/E emissivity:0.1; .m'N7`VB ]E..43 U\;Ml 面2 : gQCC>8 面型:plane FJlsWh4,6= 材料:Air Bf(Mot^ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box SmvwhX '%$-]~ #nDL 位置坐标:绕Z轴旋转90度,
,gx$U@0Z 7t+]z) s9kTuhoK 辅助数据: *fOIq88
EyPy*_A 首先在第一行输入temperature :300K,emissivity: 0.1; X)Ocn`| Qvs(Rt3?y 14;Av{Xt Target 元件距离坐标原点-161mm; "rf\' 9= XSls]o
s Y~x`6 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 B=^2g}mgK WVsKrFZT ^$6bs64FSm 探测器参数设定: w7Pe Hv+:fr" 在菜单栏中选择Create/Element Primitive /plane ^>t-v hVROzGZk
alWx=+d CvgPIrl 3T Yo ZY~zpC_ 元件半径为20mm*20,mm,距离坐标原点200mm。 LS*{]@8q $#g#[/ 光源创建: zlC^ iW1$!l>v 光源类型选择为任意平面,光源半角设定为15度。 Z^jGT+ 2
qQ2 6C@0[Q\ER 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 =k[(rvU3 oaH+c9v 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 K gR1El.r <VauJB*R ^F;Z%5P= 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 0e[ tKn( D>!v_v6 创建分析面: g: H[#I s\F EA"w/ vr8J*36{ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 N9fUlXhR vV\/pu8 N6-2*ES 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 t*ri`}a{v ?eYchVq FRED在探测器上穿过多个像素点迭代来创建热图 !>"INmz x);?jxd FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 :7 s#5b 将如下的代码放置在树形文件夹 Embedded Scripts, PW~cqo B71 Q>#)LHX KU8Cl>5 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 XACEt~y J~nJpUyP* 绿色字体为说明文字, p~k`Z^xY$ k;AV;KWI' '#Language "WWB-COM" #I*ht0++ 'script for calculating thermal image map s\n,Z?m 'edited rnp 4 november 2005 T3B|r<>I z}Mb4{d1 'declarations D7n&9Z Dim op As T_OPERATION L?/M2zc9Y Dim trm As T_TRIMVOLUME l[x`*+ON:2 Dim irrad(32,32) As Double 'make consistent with sampling ivDG3>"JG Dim temp As Double %WXVfkD Dim emiss As Double SOi(5] Dim fname As String, fullfilepath As String NjCLL`?f *N&^bF"SF 'Option Explicit hVQ+
J!qD ?>< Sub Main Td=]tVM 'USER INPUTS 6:7:NI l: nx = 31 Vq;{+j( ny = 31 }lQn]q numRays = 1000 u3ri6Y` minWave = 7 'microns "S:NU.c? maxWave = 11 'microns [fJFH^&?hr sigma = 5.67e-14 'watts/mm^2/deg k^4 J6?_?XzToT fname = "teapotimage.dat" d}6AHS[ /*xmv
$ Print "" >GF(.:7 Print "THERMAL IMAGE CALCULATION" /F E]e[Ty1 detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 J*W;{Vty <:_]Yl Print "found detector array at node " & detnode B39PDJ]hu \T#(rt\j srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 !h~#L"z %lq7; emtp Print "found differential detector area at node " & srcnode ;*$8iwBQ_ ?28G6T]/?d GetTrimVolume detnode, trm xQ(KmP2hl detx = trm.xSemiApe HT;QepY3 dety = trm.ySemiApe 7n3x19T area = 4 * detx * dety &rtz&}ZB; Print "detector array semiaperture dimensions are " & detx & " by " & dety <45dy5!Tz Print "sampling is " & nx & " by " & ny -|iA!w#31 G^eFS; 'reset differential detector area dimensions to be consistent with sampling i|! 9o: pixelx = 2 * detx / nx k=q%FlE pixely = 2 * dety / ny K=^_Ndz SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False pU)3*9?cIl Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 o dQ&0d 9!/1F ! 'reset the source power W*WH .1& SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) %:8q7PN| Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" +^3L~? 0:(dl@I)@ 'zero out irradiance array ,EJ [I^ For i = 0 To ny - 1 Jhq5G" For j = 0 To nx - 1 ]KV8u1H> irrad(i,j) = 0.0 z_iyuLRdb Next j . R8W< Next i NBR'^6 =.2cZwxX$ 'main loop b}{9
:n/SC EnableTextPrinting( False ) v lnUN #mFAl|O ypos = dety + pixely / 2 T!eh?^E For i = 0 To ny - 1 0$dNrq xpos = -detx - pixelx / 2 ^xu)~:} i ypos = ypos - pixely WOTu"Yj %!/liS EnableTextPrinting( True ) ]KPg=@Q/ Print i hI#M {cz EnableTextPrinting( False ) vBQ?S2f IHX#BY> i{RS/,h4 For j = 0 To nx - 1 .`8,$"`4) K{|dt W& xpos = xpos + pixelx U=?"j-wN _EBDv0s 'shift source z\ $>k_ LockOperationUpdates srcnode, True d:WhP_rK9 GetOperation srcnode, 1, op c!FjHlAnP op.val1 = xpos -(,6w? op.val2 = ypos Dve5m= SetOperation srcnode, 1, op xB]v LockOperationUpdates srcnode, False V<I${i$]0 03jBN2[! raytrace XA^:n+Yo DeleteRays }K]VlFR CreateSource srcnode 'cc4Y~0s TraceExisting 'draw Tk=3"y+u[ +s 0Bt ' 'radiometry L6}x3 For k = 0 To GetEntityCount()-1 'r <BaL If IsSurface( k ) Then *X55:yha temp = AuxDataGetData( k, "temperature" ) v-aq".XQ emiss = AuxDataGetData( k, "emissivity" ) a^1c _ If ( temp <> 0 And emiss <> 0 ) Then 7I3CPc$ ProjSolidAngleByPi = GetSurfIncidentPower( k ) ?{Z0g+B1 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 1:Gd{z irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 'aWZ#GS* End If @*{BX~f
H%%nB End If 6df&B
.gg (:muxby% Next k ;5_S q%&7J< Next j K:Go%3~, lfG's'U-z Next i #I wB EnableTextPrinting( True ) &;3z 1s/ vw6FvE`lC 'write out file UAO#$o( fullfilepath = CurDir() & "\" & fname !/Ps}.)A` Open fullfilepath For Output As #1 R?Q-@N>wE Print #1, "GRID " & nx & " " & ny 3k0%H]wt Print #1, "1e+308" T#f@8 -XUE Print #1, pixelx & " " & pixely PTZ1oD Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ><7`$ 2Or SX,zJ`" maxRow = nx - 1 VMXXBa& maxCol = ny - 1 ml2z For rowNum = 0 To maxRow ' begin loop over rows (constant X) *s4!;2ZhsU row = "" Br!&Y9 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 1dO8[5uM7a row = row & irrad(colNum,rowNum) & " " ' append column data to row string jYZWf `X~ Next colNum ' end loop over columns !AHm+C_=Lg Z.(x|Q9 Print #1, row 3%a37/|~y 7rg[5hP T Next rowNum ' end loop over rows F'*&-l Close #1 0G 1o3[F f}!26[_9{ Print "File written: " & fullfilepath #|i{#~gxM Print "All done!!" o$k$ End Sub eP?|U.on }(''|z#UE 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ge8zh/` ?O?~|nI z\5Nni/~6D 找到Tools工具,点击Open plot files in 3D chart并找到该文件 zl?N1>KS c y$$} l$KcS&{w9 打开后,选择二维平面图: KJfyh=AD( %"2B1^o>
|