切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1276阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6080
    光币
    24553
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 @%ECj)u`O  
    _e<o7Y@_  
    成像示意图
    WcUJhi^\C  
    首先我们建立十字元件命名为Target n6Z|Q@F  
    /Lf6WMit  
    创建方法: hpbf&S4  
    zTm]AG|0  
    面1 : y/_XgPfWU  
    面型:plane "&+3#D >  
    材料:Air V9%aBkf8w  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box Kq6jw/T  
    hGTV;eU  
    5"KlRuv%  
    辅助数据:  :$r ^_  
    首先在第一行输入temperature :300K, *ZCn8m:-+  
    emissivity:0.1; o*S"KX $  
    BOVPKX  
    P ,mN >  
    面2 : w Iv o"|%  
    面型:plane ?}P5p^6  
    材料:Air p s|)cW3`  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box f>$``.O  
    7Ke&0eAw  
    JK_OZ  
    位置坐标:绕Z轴旋转90度, fz_nsVD  
    Fj p.T;  
    }:Z9Vc ZP`  
    辅助数据: 4_?7&G0(  
    UK[v6".^h  
    首先在第一行输入temperature :300K,emissivity: 0.1; aptY6lGv-|  
    G=9d&N  
    gXFWxT8S  
    Target 元件距离坐标原点-161mm; kSncZ0K{  
    R!\EK H  
    \_6OCVil  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 6=GZLpv  
    j7QX ,_Q  
    vG41Ck1  
    探测器参数设定: (=x"Y{%  
    / +K?  
    在菜单栏中选择Create/Element Primitive /plane 3(E $I5  
    ` |Z}2vo;j  
    tfO#vw,@  
    si4-3eC  
    B^ 7eoW  
    ~l[r a  
    元件半径为20mm*20,mm,距离坐标原点200mm。 [I*! lbt  
    NPnHH:\;  
    光源创建: iPG0o %  
    YNdrWBf)  
    光源类型选择为任意平面,光源半角设定为15度。 [tT8_}v$LN  
    _u0$,Y?&|  
    Ka!I`Yf  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 cR7wx 0Aj  
    El_Qk[X|A  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 c7uG9  
    X@N$Z{  
    IIFMYl gF  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 +|cI:|H>  
    c~}l8M %  
    创建分析面: }=](p-]5  
    g\fhp{gWB  
    J97R0  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Yf_6PGNzX  
    p&p.Q^"ok  
    (46 {r}_O  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 zk_Eb?mhwV  
    K+\nC)oG  
    FRED在探测器上穿过多个像素点迭代来创建热图 'fV%Z  
    +\ _{x/u1  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 {Bvj"mL]j  
    将如下的代码放置在树形文件夹 Embedded Scripts, 5v.DX`"  
    cV K7  
    W[bmzvJ_X  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 66&EBX}  
    -[7O7'  
    绿色字体为说明文字, rt-\g1x  
    b]Kk2S/  
    '#Language "WWB-COM" F'P Qqb{  
    'script for calculating thermal image map e9pOisZ;8  
    'edited rnp 4 november 2005 rt7<Q47QE  
    AbwbAm+  
    'declarations od<b!4k~s  
    Dim op As T_OPERATION MZv]s  
    Dim trm As T_TRIMVOLUME b}9[s  
    Dim irrad(32,32) As Double 'make consistent with sampling BbOu/i|  
    Dim temp As Double 0*%&>  
    Dim emiss As Double z$lF)r:Bc  
    Dim fname As String, fullfilepath As String >Q E{O.Z  
    n^(A=G  
    'Option Explicit qNgd33u1  
    7v}x?I  
    Sub Main \{\MxXW  
        'USER INPUTS !eR3@%4  
        nx = 31 bUy,5gk-  
        ny = 31 \YJy#2K  
        numRays = 1000 ?8@>6 IXn  
        minWave = 7    'microns LE^G&<!  
        maxWave = 11   'microns OKOu`Hz@  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 zJlQ_U-!  
        fname = "teapotimage.dat" j=+"Qz/hr_  
    mg:!4O$K  
        Print "" 4NR@u\S  
        Print "THERMAL IMAGE CALCULATION" }u{gR:lZ  
    A~ (l{g  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 u`:hMFTID  
    =1;=  
        Print "found detector array at node " & detnode SjEAuRDvUz  
    H4-qB Z'  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 V}w;Y?] J  
    !/{+WHxIr|  
        Print "found differential detector area at node " & srcnode \(UKd v  
    +#J,BKul  
        GetTrimVolume detnode, trm Vn=qV3OE]  
        detx = trm.xSemiApe neF]=uCWnT  
        dety = trm.ySemiApe 4pU>x$3$  
        area = 4 * detx * dety ?dZt[vAMn  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety T5Eseesp  
        Print "sampling is " & nx & " by " & ny &:B<Q$g#  
    &xZyM@  
        'reset differential detector area dimensions to be consistent with sampling {NM+Oj,~'  
        pixelx = 2 * detx / nx f3*?MXxb16  
        pixely = 2 * dety / ny ?/*~;fM  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 1M3% fW  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 qf)$$qi  
    Wo$%9!W  
        'reset the source power Ei>m0 ~<\  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) oT95^y\9  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" \[2lvft!  
    wmr-}Y!9u%  
        'zero out irradiance array 'Yy&G\S  
        For i = 0 To ny - 1 @+,pN6}g  
            For j = 0 To nx - 1 SU_SU".  
                irrad(i,j) = 0.0 w2(guL($  
            Next j ^,Ydr~|T  
        Next i s Wjy6;  
    ~=r^3nZR/J  
        'main loop c>bq%}  
        EnableTextPrinting( False ) !hxIlVd{  
    E9! N>0  
        ypos =  dety + pixely / 2 9X<OJT;3J  
        For i = 0 To ny - 1 2i#Sn'1  
            xpos = -detx - pixelx / 2 G`=r^$.3WB  
            ypos = ypos - pixely w>?Un,K  
    -5G)?J/*  
            EnableTextPrinting( True ) ]Al;l*yw  
            Print i 6"j_iB  
            EnableTextPrinting( False ) 2h30\/xkU  
    z +2V4s=  
    =/Aj  
            For j = 0 To nx - 1 or ;f&![w  
    tS# `.F~y  
                xpos = xpos + pixelx eKZ%2|+j!7  
    7[v%GoE  
                'shift source :HViX:]H  
                LockOperationUpdates srcnode, True jZfx Jm  
                GetOperation srcnode, 1, op 1MkI0OZE  
                op.val1 = xpos ^W83ByP  
                op.val2 = ypos m@Ev~~;  
                SetOperation srcnode, 1, op ^S)TO}e  
                LockOperationUpdates srcnode, False *mG`_9  
    VU|dV\>  
                'raytrace {C*\O)Gep  
                DeleteRays DsDzkwJE  
                CreateSource srcnode JeH;v0  
                TraceExisting 'draw vy@rQC %9  
    v"u^M-_  
                'radiometry UnWW/]E  
                For k = 0 To GetEntityCount()-1 r~[vaQQ6L  
                    If IsSurface( k ) Then }7<5hn E  
                        temp = AuxDataGetData( k, "temperature" ) 8Ad606  
                        emiss = AuxDataGetData( k, "emissivity" ) 3Q}$fQ&S  
                        If ( temp <> 0 And emiss <> 0 ) Then 9W*+SlH@ !  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) zQy"m-Q  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) uw\1b.r'B  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi Y[ reD  
                        End If ZBD;a;wx  
    6x{<e4<n  
                    End If Zzua17  
    ytEC   
                Next k yQS+P8x&|]  
    6" T['6:j  
            Next j 2 mjV~  
    ^:, l\Y  
        Next i ajhEL?%D  
        EnableTextPrinting( True ) %rQuBi# 1f  
    2pHR_mrb  
        'write out file z5\;OLJS,  
        fullfilepath = CurDir() & "\" & fname Lju7,/UD  
        Open fullfilepath For Output As #1 C z#Z<:  
        Print #1, "GRID " & nx & " " & ny %9C@ Xl  
        Print #1, "1e+308" zkM"cb13q/  
        Print #1, pixelx & " " & pixely 10Wz,vW,n  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 vZ7gS  
    =iB,["s  
        maxRow = nx - 1 ~Z/ ^c,[:  
        maxCol = ny - 1 pC,o2~%{  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) V5}nOGV9  
                row = "" 7"X>?@  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ` D7C?M#j]  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string }n,Zl>T9  
            Next colNum                     ' end loop over columns $>M<j  
    x  LBQ  
                Print #1, row zZ-wG  
    +KGZ HO!  
        Next rowNum                         ' end loop over rows }0 hL~i  
        Close #1 I&9S;I$  
    Wx'Kp+9'  
        Print "File written: " & fullfilepath @*N )i?>  
        Print "All done!!" @\_x'!R  
    End Sub _:n b&B  
    fBtm%f  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: - "*r  
    NIr@R7MKd  
    Z!xVgM{  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 .ujT!{>v/  
      
    [36,eK  
    ~Aad9yyi  
    打开后,选择二维平面图: b<I9 MR  
    Rr(* aC2P  
    QQ:2987619807
    C8N{l:1f]  
     
    分享到