切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1353阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6354
    光币
    25915
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 S8Fmy1#  
    |C%Pjl^YkV  
    成像示意图
    3oZ=k]\  
    首先我们建立十字元件命名为Target &hIRd,1#  
    7IlOG~DC  
    创建方法: wd@aw/  
    m(iR|Zx  
    面1 : ppIbjt6r  
    面型:plane &ZHC-qMRK  
    材料:Air ''OfS D_g  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box _96~rel_P  
    fQK"h  
    /Ss7"*JLe  
    辅助数据: `IpA.| Y  
    首先在第一行输入temperature :300K, `i +g{kE2M  
    emissivity:0.1; hG~reVNf  
    ^vs=f 95  
    OYC_;CP  
    面2 : YNrp}KQ  
    面型:plane [L $9p@I  
    材料:Air :1q 4"tv|  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box 'uDjFQX  
    sAJ7R(p  
    -tsDMji~V  
    位置坐标:绕Z轴旋转90度, OX:O^ (-r,  
    \qvaE+  
    ,bE$| x'  
    辅助数据: mnk"Vr` L  
    Q^K"8 ;  
    首先在第一行输入temperature :300K,emissivity: 0.1; +z9@:L  
    ; |/leu8  
    V(MFna)  
    Target 元件距离坐标原点-161mm; oY~ Dg  
    CRve.e8J  
    9vNkZ-1  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 D'l5Zd  
    ZD#9&q'4<  
    E@05e  
    探测器参数设定: mV73 \P6K  
    2jsw"aHW  
    在菜单栏中选择Create/Element Primitive /plane Y!q!5Crfi  
    SQ,?N XZ  
    Ch()P.n?  
    $GQ`clj<  
    [a o U5;7  
    h0oMTiA  
    元件半径为20mm*20,mm,距离坐标原点200mm。 ?;YC'bF  
    ']- @? sD$  
    光源创建: j6~nE'sQ  
    *rZ^^`4R  
    光源类型选择为任意平面,光源半角设定为15度。 %B 5r"=oO  
    cH-@V<  
    'Djm0  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ~1m2#>  
    7J28JK  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 e6X[vc|Y}  
    Ko&hj XHx  
    ultG36.x  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Ee1LO#^_6  
    v]% WH~>  
    创建分析面: S|rgCh!h  
    9%ii '{  
    B()/.w?A  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 to8X=80-3  
    OX%MP!#KU  
    Iq+>qX   
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 dw~p?[  
    $wYtyN[  
    FRED在探测器上穿过多个像素点迭代来创建热图 `6y{.$ z  
    )2UZ% ?V#  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ]%uZ\Q;9p  
    将如下的代码放置在树形文件夹 Embedded Scripts, Uw-p758dD  
    +9O5KI?P  
    4ww]9J  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 0w'j+  
    G a;.a  
    绿色字体为说明文字, vvB(r!  
    &bgvy'p  
    '#Language "WWB-COM" >U1R.B7f  
    'script for calculating thermal image map =.|J!x  
    'edited rnp 4 november 2005 T,fI BD:  
    (qn2xrV  
    'declarations s%iOUL2/  
    Dim op As T_OPERATION Nf3.\eR  
    Dim trm As T_TRIMVOLUME mD:IO  
    Dim irrad(32,32) As Double 'make consistent with sampling w|mb4AyL{?  
    Dim temp As Double a</D_66  
    Dim emiss As Double ]maYUKqv}'  
    Dim fname As String, fullfilepath As String 4GG>!@|  
    =5D nR  
    'Option Explicit =S[yE]v^  
    sfr(/mp(  
    Sub Main {Z;jhR,  
        'USER INPUTS #jpoHvt h  
        nx = 31 @ZN^1?][  
        ny = 31 #tt?!\8C  
        numRays = 1000 6m.k;'  
        minWave = 7    'microns 2=-utN@Z  
        maxWave = 11   'microns =k3!RW'  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 Q@e[5RA +]  
        fname = "teapotimage.dat" at!Y3VywG  
    KPSh#x&I  
        Print "" IYWjH E+)d  
        Print "THERMAL IMAGE CALCULATION" +^rh[>W  
    ERUt'1F?]  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 n}A\2bO  
    OQ :dJe6  
        Print "found detector array at node " & detnode #8{F9w<Rf  
    ?#0snlah|  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 s#h8%['  
    +u@aJ_^  
        Print "found differential detector area at node " & srcnode *KK+X07  
    T0Yiayt  
        GetTrimVolume detnode, trm w.Ezg j  
        detx = trm.xSemiApe 2)?(R;$,  
        dety = trm.ySemiApe c~A4gtB=  
        area = 4 * detx * dety =1h9rlFj"D  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety H-rWDN#  
        Print "sampling is " & nx & " by " & ny v]2S`ffP  
    oq-<ob  
        'reset differential detector area dimensions to be consistent with sampling s/"&9F3  
        pixelx = 2 * detx / nx R cY>k  
        pixely = 2 * dety / ny ;;5Uwd'-  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False JXiZB 8}  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 aYL|@R5;e  
    0YH+B   
        'reset the source power ufa41$B'yG  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) c_{z(W"  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" +c:3o*  
    z!=P@b  
        'zero out irradiance array Y**|N8e  
        For i = 0 To ny - 1 n?#!VN3  
            For j = 0 To nx - 1 (VyNvB  
                irrad(i,j) = 0.0 puSLqouTM  
            Next j |1Dc!V'?"  
        Next i fBBa4"OK=  
    aRj>iQaddx  
        'main loop e"-X U@`k1  
        EnableTextPrinting( False ) +y[@T6_  
    IC/(R! Crj  
        ypos =  dety + pixely / 2 LCXO>MXN  
        For i = 0 To ny - 1 )g| BMmB  
            xpos = -detx - pixelx / 2 >-T`0wI  
            ypos = ypos - pixely lJykyyCY+  
    {s,+^7  
            EnableTextPrinting( True ) >YW\~T  
            Print i !=Y;h[J.p  
            EnableTextPrinting( False ) RnVtZ#SCh  
    s*M@%_A?  
    ;y?);!g  
            For j = 0 To nx - 1 ?<X(]I.j  
    |ifHSc.j<  
                xpos = xpos + pixelx `U!y&Q$,  
    P#kGX(G9!  
                'shift source BOlAm*tFt  
                LockOperationUpdates srcnode, True @mw "W{  
                GetOperation srcnode, 1, op (J$\-a7<f  
                op.val1 = xpos nR \'[~+  
                op.val2 = ypos Mro4`GL  
                SetOperation srcnode, 1, op \`'KlF2  
                LockOperationUpdates srcnode, False NQTnhiM7$  
    r'/;O  
                'raytrace 7&}P{<}o^  
                DeleteRays h4&;?T S  
                CreateSource srcnode c"YXxA J  
                TraceExisting 'draw -ML6d&cm  
    4z7G2  
                'radiometry \ v@({nB8  
                For k = 0 To GetEntityCount()-1 9V1cdb~?"T  
                    If IsSurface( k ) Then ]*"s\ix  
                        temp = AuxDataGetData( k, "temperature" ) 1N`vCt]w  
                        emiss = AuxDataGetData( k, "emissivity" ) 2)iD4G`  
                        If ( temp <> 0 And emiss <> 0 ) Then TDK@)mP  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) KM?1/KZ/~  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) KV!<Oq  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi _cJ[ FP1  
                        End If D  _X8-  
    L6:h.1 U$  
                    End If <T,A&`/  
    8``;0}'PC  
                Next k S[M4ukYK  
    u.|~   
            Next j  ~m=EM;  
    Lf}8qB#Y  
        Next i AG"l1wz  
        EnableTextPrinting( True ) ^z1IN-Tm/  
    3 &&+Y X  
        'write out file mxTk+j=  
        fullfilepath = CurDir() & "\" & fname 6o3T;h  
        Open fullfilepath For Output As #1 Id8wS!W`7  
        Print #1, "GRID " & nx & " " & ny }amU[U,  
        Print #1, "1e+308" #5CI)4x0!  
        Print #1, pixelx & " " & pixely eBB:~,C^q.  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 _]#klL  
    =fLL|  
        maxRow = nx - 1 F%.xuLW  
        maxCol = ny - 1 mLL$|  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) Ng<1Sd|MV  
                row = "" [5ethM  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) w*LbH]l<-  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string tn<6:@T  
            Next colNum                     ' end loop over columns 'UwI*EW2S  
    WnxEu3U  
                Print #1, row   -/{af  
    )na&" bJ  
        Next rowNum                         ' end loop over rows y>o>WN<q  
        Close #1 e$l 6gY  
    gtU1'p"  
        Print "File written: " & fullfilepath R"xp%:li  
        Print "All done!!" J%v5d*$.  
    End Sub - V) R<  
    n[k1np$7?6  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: gp  
    -e`;bX_N)  
    P;91~``b-  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 90:K#nW;  
      
    @ RR\lZ  
    b](o]O{v  
    打开后,选择二维平面图: hY;_/!_  
    us{nyil1  
    QQ:2987619807
    TQ9'76INb  
     
    分享到