?摘 要:将可靠性优化设计方法应用于普通圆柱蜗杆减速器设计,使普通圆柱蜗杆减速器在满足承载能力及强度要求条件下,效率最高、体积最小、润滑条件最佳。 SNQz8(O
关键词:普通圆柱蜗杆减速器;可靠性优化设计;多目标 t#fs:A7P?}
;b, -$A
Fg_?!zR>6
4JX`>a{<
1前言 aR`_h=a
蜗杆传动具有传动比大而结构尺寸紧凑等优点,在许多设备的传动系统中得到了广泛的应用,而目前对蜗杆减速器进行设计时,常把设计变量作为确定性变量而忽略其随机性,这样便使设计结果很难真实地反映减速器的运行情况。另一方面,对蜗杆减速器进行优化设计时,大多是进行单目标优化设计,为使蜗杆减速器的设计既具有运行可靠性的定量描述,又有获得其整体综合功能最优的设计方案,运用可靠性优化设计方法,对圆柱蜗杆减速器进行了可靠性多目标优化设计。? &p/S>qKu#
2可靠性多目标优化模型的建立 p:DL:^zx
根据蜗杆减速器的工作特点和结构要求,将圆柱蜗杆减速器的体积最小、传动效率最高、润滑条件最佳作为多目标优化设计的分目标函数。 Mfnlue](
普通圆柱蜗杆减速器的简图如图1所示。 FZ[@])B
jA20c(O
^n\9AE3
2.1目标函数? \(.nPW]9
2.1.1体积最小分目标函数f1(x)的确定 BNAguAxWo
由于蜗杆减速器体积主要取决于蜗杆、蜗轮和蜗轮轴的体积,故取三者的体积之和作为目标函数。 {DKXn`V
@5{.K/s
式中,蜗轮齿宽B2=[m(q+2)-0.5m]sinγ+0.8m;其中γ为蜗轮齿宽角之半,一般γ=50°;蜗杆螺纹部分长度L1=(12.5+0.09Z2)m+25;蜗轮轮毂端面与箱体内壁间的距离,一般取Δ2=15mm;轴承中心至箱体内壁间的距离,一般取Δ3=0.25ds2。? 4yA9Ni
2.1.2效率最高分目标函数?f2(x)的确定 O"_erH\nk
为使蜗杆传动效率最大,发热量与磨损最小,应使齿面相对滑动速度Vs趋于最小,即 i /O1vU#
b@nri5noBm
2.1.3润滑条件最佳分目标函数f3(x)的确定
3MNhH
由磨擦学可知,为建立弹性流体动压润滑状态创造有力条件,需使蜗杆蜗轮齿面接触点处的诱导法曲率半径R趋于最大,即其曲率1/R趋于最小。 &