亿源通丨5G承载网中的WDM技术
5G应用场景 2019年启动建设的5G通信技术,一般认为,对人类社会的改变将不限于日常生活,它将支撑互联网从移动互联网向智能互联网演进,并对产业生态产生深远的影响。 国际标准化组织3GPP定义了5G的三大应用场景:eMBB(Enhance Mobile Broadband,增强移动宽带)、uRLLC(Ultra-Reliable Low Latency Communications,高可靠性低时延连接)、mMTC(Massive Machine Type Communication,大规模机器类通信)。其中,eMBB要求用户的体验速率达到1Gbps,可以支撑3D及超高清视频等大流量移动宽带业务;uRLLC要求传输时延低于1ms,以支撑无人驾驶、工业自动化、远程手术等实时应用场景;mMTC指的是大规模物联网应用,要求终端连接密度达到每平方公里百万级。 5G承载网的架构 5G商用,承载先行。为支撑上述三大应用场景,要求对基于光纤的承载网进行重新规划。图1为典型的5G承载网架构,它通常由城域接入网、城域汇聚网、城域核心网和省际骨干网四级构成。考虑投资和运维成本,在无线接入RAN段,4G通信系统通常采用的是基于RRU+BBU功能划分的D-RAN(分布式无线接入)架构,5G则演进为基于AAU+DU+CU功能划分的C-RAN(集中式或者云化的无线接入)架构。 ![]() 图1. 5G承载网架构 5G承载网的各级网络节点之间通过光模块和光纤连接,其中基站与DU之间的连接被定义为前传、DU与CU之间的连接被定义为中传、CU与城域核心网之间的连接被定义为回传。前传距离通常<10/20公里,接口速率为10/25/100Gbps;中传距离通常<40公里,接口速率为25/50/100Gbps;回传距离通常为40-80公里,接口速率为100/N×100Gbps;而省际骨干网的传输距离在数百公里,接口速率为N×100/200/400Gbps。 ![]() 图2. 5G承载网中的前传、中传和回传链路 与4G网络不同的是,5G信号因频率更高,单个基站的覆盖面积减少,5G组网需要布设的基站数量将是4G网络的2-3倍。为控制成本,5G前传和中传网络更多的采用C-RAN架构,替代4G网络常用的D-RAN架构。C-RAN架构的优势有:其一,相对D-RAN可减少末端机房和传输设备需求,节省站址获取、机房租金和传输成本,理论上集中度越高则效果越明显;其二,由于DU集中放置便于统一维护,因此在机房建设、设备维护乃至空调电费上,较D-RAN有明显优势,因此C-RAN将成为5G中前传网络的主要部署模式;其三,C-RAN架构对DU进行池组化或者云化部署,可实现基带资源的共享和多站间的业务协同。 选择传输技术的考量因素 光纤传输技术在电信骨干网和数据中心等领域已经成为主导并获广泛应用,为了增加传输容量,普遍采用WDM传输,然而面向不同的应用场景,具体的传输技术有所差异。影响选择的主要因素是光纤链路的损耗和色散;所采用的光源(包含调制器)和探测器,对传输系统的成本有重要影响,也是选择技术方案时的考量因素。此外,产业链的传承也对成本有重要影响,成为重要考量因素之一。 常规石英光纤的损耗谱如图3所示,它的第一、二、三传输窗口分别以850nm、1310nm和1550nm为中心,其中850nm是最早的多模光纤通信系统所采用的传输波长;1310nm是常规单模光纤G.652的零色散点位置,如图4(a)所示,光纤中的材料色散和波导色散在此波长处相互抵消;1550nm则是石英光纤的损耗最低处,为了克服G.652光纤在此处色散较大的问题,人们开发了G.655光纤,将光纤的零色散点设置在偏离1550nm不远处,如图4(b)所示,这样可以在1550nm波段获得低色散,又不会在DWDM传输时产生四波混频、交叉相位调制等非线性效应。 ![]() 图3. 光纤损耗谱 ![]() 图4. G.652和G.655光纤的色散曲线 在工程应用中,人们通常将图3中的第二、三传输窗口分别称为O波段和C波段,为了拓展可利用的传输波段,人们在C波段的左右两侧开发了S、L两个波段。此外,通过对石英光纤的进一步提纯,削去因OH-离子吸收在1385nm附近产生的水峰,拓展出E波段,从而将石英光纤的传输带宽扩充至1260~1620nm,宽达360nm,通常称为全波光纤。 通信系统通常采用半导体激光器作为光源,所发射的并非理想单色光,总是存在一定的光谱线宽,其中不同波长成分因色散而传播速度不同,在高速长距离传输系统中,容易引起误码。不同传输速率的光信号,对色散的容差如表1。 ![]() |