其实这个事情和做薄膜的应力问题类似,所以是考虑胶层厚度远小于基底厚度的情况,详细的边界条件应该是: @g1T??h
1. 基底根据薄板理论的基尔霍夫假设变形,在任何地方的法向应力分量σzz=0,变形前直 hGo/Ve+@
的并垂直于基底中平面的材料线在变形后仍然保持. ro18%'RRI
2. 相比于基底的一致性,位移梯度的所有分量是非常小的,以至于可以使用线弹性理论 #QiNSS
3. 薄层-基底系统的性质是薄层材料对整体弹性刚度的贡献可以忽略不计 M0woJt[&
4. 薄层中力f是由错配应变单独决定的系统参数 r9~I R
5. 相比于f的大小,基底变形引起的薄层力大小的变化可忽略不计 lk4$c1ao2@
6. 变形是轴对称的 0D}k ^W
7. 基底中平面表面曲率1/k空间分布均匀 gg$:U
8. 中平面面内应变是均匀的,各向同性延伸 OQ4rJ#b
9. 忽略薄层周围的局部边缘效应 2Kw i4R
/B5rWJ2AS
以上基础上,与镀膜应力分析的温度变量不同,这里引入的变量是胶水固化引起的收缩应力,将该应力作用于基底,就可以得到对应面形变化. +A2}@k
K#dG'/M|Pb
Ob|v$C