渐晕输入和输出
参考Donald Dilworth《Lens Design Automatic and quasi-autonomous computational methods and techniques》书中第十一章
zxffjz,Fe: 打开保存在路径C:\Synopsys\Dbook\中示例镜头C11L1。
9j~|m 只需在CW窗口键入:SYNOPSYS AI>FETCH C10L1,并点击“Enter”键。然后点击按钮

得到PAD图,如图1所示,它是一个具有渐晕的三片式
镜头。由图1可知,上下视场点(绿色和蓝色)的
光束尺寸远小于轴上光束(红色)。
图1 具有渐晕的三片式镜头
iR(jCD?) Y 图1中相应的局部放大镜头结构
ygn]f*;?kw /a:sWmxMT 在CW中输入:SYNOPSYS AI>LE,打开该镜头的.RLE文件,代码如下:
U#=5HzE RLE !读取镜头
<W<>=vDzyE ID COOKE TRIPLET F/4.5 670 !镜头标识(ID COOKE TRIPLET F/4.5)和日志编码(670)
dZ"w2ho FNAME 'C11L1.RLE ' !指定文件名为'C11L1.RLE'
cgevP`*] LOG 670 !日志编码;每次SYNOPSYS运行都会自动分配一个日志编码,并自动增加;
u>W:SM WAVL .6562700 .5875600 .4861300 !定义可见光三个
波长,按长波到短波的顺序,默认权重为1
sj& j\<( APS -3 !定义表面3为实际光阑面;负号(-)表明真实光瞳有效;
"Gh5
^$w?j WAP 3 !定义广角光瞳选项3
F vt5vQ UNITS MM !定义
透镜单位为毫米
wz{]CQ 7" OBB 0.000000 20.0000000 5.5550000 -2.9848806206109 0.0000000 0.0000000 5.5550000
m/(f?M l !定义物体类型为OBB;第一个数字表明物体在无穷远处,边缘
光线角度UMP0为0;第二个数字为半视场角;第三个数字为半孔径YMP1;第四个数字为表面1上主光线高度YP1;后面三个值是光线在X-Z平面上的相应值。
E|K~WO]>o 0 AIR !表面0(物面)的折射率为1
OELh6R 1 CAO 4.69068139 0.00000000 0.00000000 !表面1外孔径为4.69068139;X方向偏心为零;Y 方向偏心为零
vv%
o+r-t 1 RAD 21.4939500000000 TH 2.00000000 !表面1半径为21.49395mm,厚度为2mm;
qe{:9 1 N1 1.61726800 N2 1.62040602 N3 1.62755182 !表面1,波长1折射率(N1)为1.61726800,波长2折射
Td"_To@jd 率为1.62040602,波长3折射率为1.62755182;
G&2`c\u{ 1 CTE 0.630000E-05 !定义表面1的热膨胀系数(CTE)
,q|;`?R; 1 GTB S 'SK16 ' !定义表面1的玻璃
材料,S-玻璃库Schott,'SK16 ' -玻璃类型
AYnk.H-v 2 CAO 4.25560632 0.00000000 0.00000000 !表面2外孔径为 4.25560632,X方向无偏心,Y方向无偏心
h~R= ?%H[ 2 RAD -124.0387000000000 TH 5.25509000 AIR !定义表面2半径,厚度,折射率
0V_dg |. 3 CAO 3.19251725 0.00000000 0.00000000 !表面3外孔径为3.19251725
dnW #" 3 RAD -19.1051800000000 TH 1.25000000 !定义表面3半径,厚度
Q"+)xj "q,.O5q}Y 3 N1 1.61163844 N2 1.61658424 N3 1.62846980 !表面3的三个波长折射率
y6C3u5` 3 CTE 0.830000E-05 !表面3的热膨胀系数
>.X& v 3 GTB S 'F4 ' !表面3的玻璃材料
i
SD?y# 4 CAO 3.15978037 0.00000000 0.00000000 !表面4的外孔径大小
U.,_zEbx, 4 RAD 21.9794700000000 TH 4.93473000 AIR !表面4的半径,厚度,折射率
rMy(NAo_ 5 CAO 3.48158127 0.00000000 0.00000000 !表面5的外孔径大小
pni*#W*n 5 RAD 328.3317499999989 TH 2.25000000 !表面5的半径,厚度;
mufJ@Y S# 5 N1 1.61726800 N2 1.62040602 N3 1.62755182 !表面5的三个波长折射率;
;Or]x?- 5 CTE 0.630000E-05 !表面5的热膨胀系数
H;.${u^lhd 5 GID 'SK16 ' !表面5的玻璃类型为'SK16'
)EhRqX9 5 PIN 1 !表面5拾取表面1的折射率
nS5g!GYY,k 6 CAO 4.00000022 0.00000000 0.00000000 !表面6的外孔径大小
9nrmz>es|- 6 RAD -16.7537700000000 TH 43.24303731 AIR !表面6的半径,厚度,折射率
3{*nG'@Mal 6 TH 43.24303731 !表面6的厚度
p|f5w"QcH 6 YMT 0.00000000 !YMT求解在表面7上指定的轴向边缘光线高度为0时所对应的厚度
9J
$"Qt5;6 7 CV 0.0000000000000 TH 0.00000000 AIR !表面7的曲率,厚度,折射率
E[8R
)xC@ END !以END结束
6*uWRjt T}55ZpSC& ,N`cH\ (n+FEE< WAP3选项调整入射光瞳尺寸,使得每个视场点处的边缘光线清除所有定义的透镜孔径。除了表面7之外的所有表面都被分配了一个硬通光孔径CAO。
+IkL=/';# WAP3选项是处理渐晕的一种方法。但是在
优化过程中,当镜头变化时,光束的大小可在每个表面发生变化,当你不知道完成后的光束大小时,将硬CAO指定到表面是无意义的。因此,在优化过程中永远不要使用WAP 3选项,只在必要时使用。
-Y=o @7j$$ QRL+-)DMc a2!;$B% 相反,
采用分段渐晕。首先删除所有CAO和声明WAP,使用代码如下:
Y$\c_#/] CHG !改变镜头
|h6u%t2AY CFREE !移除光阑孔径
BdQ/kXZu+ WAP 0 !默认近轴光瞳
% r>v^1Vo END !以END结束
4?2$~\
x Fk*C8 W~ i599!v 运行代码后,得到具有默认孔径且无渐晕的三片式 镜头,如图2所示。镜头像质更差。
图2 具有默认孔径且无渐晕的三片式镜头,像质更差
4!k0 在CW中键入POP命令,显示 表面6上有YMT求解而无曲率求解:
|iLf;8_: 我们增加一个透镜,使镜头以F/4.5工作,因此UMC求解值为-0.1111。
aSVR+of 代码如下:
Mr6 q7 CHG !改变镜头
%~$coZY^ 6 UMC -.1111 !UMC求解在表面6的曲率,并给出相对于光轴的近轴轴向边缘光线角U的规定
&RL
j^A! 值。U的正切值为1/(2*FNUM)=0.1111,负号表示边缘光线在图像下端。
"eb+O STORE 3 !将镜头结果保存在透镜库3的位置
1[k.apn 4Y
`=`{Q y|Vwy4tK9 在CW中键入AEE命令,新建一个宏编辑器。优化宏代码如下:
jM'(Qa
LOG !日志编码,每次SYNOPSYS运行都会自动分配一个日志编码
)r|Pm-:A{ PANT !
参数输入
Vu1swq)l VLIST RAD ALL !改变所有表面半径
iR39lOr VLIST TH ALL !改变所有表面厚度
UJ^MS4;I3 END !以END结束
)~LqBh L+N;mI8 *\"+/ AANT !
像差输入
N`xXH AEC !自动控制玻璃元件和空气间隙的边缘厚度,防止边缘厚度太薄,默认值为1mm
^9`S`Bhp ACC !自动控制玻璃元件中心厚度,防止中心厚度太厚,默认值为1inch
/4wPMAlb GSR .5 10 5 M 0 !校正轴上视场光线网格中的5条光线产生的XC像差;0.5-孔径占比;10-权重;
d:{#Dk# 5-光线数,M-多色;0-轴上视场;
W'3~vQF GNR .5 2 3 M .7 !校正0.7视场光线网格中的光线产生的YC和XC像差;
$_orxu0W GNR .5 1 3 M 1 !校正全视场光线网格中的光线产生的YC和XC像差;
WN6%%*w END !以END结束
bb}$7v`G gH<A.5 xy SNAP !每次迭代一次PAD更新一次
`Dp_c&9] SYNO 30 !迭代次数为30次
qtYVX:M@, x$+g/7* ;9"6g=q G Ebm$\ 运行优化宏后,消除了边缘羽化,镜头结构如图3所示。由图可知,像差失控,特别是全视场。
图3 消除边缘羽化的三片式镜头
0Ma3 sMHP=2## 需要进一步优化,将光束大小设置为全视场光线高度的40%,可通过向AANT中添加VSET指令来完成,代码如下:
oF {u AANT
D9/PVd AEC
gl>%ADOB@ ACC
qx2M"uFJ VSET 0.4 !设置渐晕,指定光束大小为全视场光线的正常高度的40%;此命令须在生成光线命令之前
;oGpB#[zO GSR .5 10 5 M 0
YX{c06BHs GNR .5 2 3 M .7
j~C-T%kYa GNR .5 1 3 M 1
XZH\HK)K-] END
}J m~b9j ^\3r}kJ0Lp 图4 三片式镜头重新优化,预期渐晕到40%的孔径
dO!5` ] c6~<vV'} 点击图标

打开WS工作表,在编辑窗格中输入CFIX指令,点击按钮'Update'。现在,为每个表面
e{E8_2d 分配了一个硬孔径CAO,其大小与当前有效的默认CAO相同。
JS#AoPWA &)Z]nNVb CEEAyip-c 点击镜头的表面6,选择CAO半径,单击‘SEL’按钮。将顶部滑块指定给该孔径半径。将滑块向左移动,减小孔径。在全视场观察TFAN,在TFAN左侧40%的位置出现渐晕。如图5所示。
图5 调节表面6的孔径,镜头将在TFAN的左侧产生所需的渐晕
/j$`Cq3I ujan2'YT 在表面1上执行相同的操作,在TFAN右侧出现渐晕,如图6所示。
图6 调节表面1的孔径,镜头将在TFAN的右侧产生所需的渐晕
7L !$hk 6#upBF: ,]H2F']4Z 但是为什么PAD显示的仍然是原始的、无渐晕的光束?
MCO`\"`l 我们可通光关闭开关65激活渐晕;也可在CW中键入指令WAP 3来激活渐晕。
图7 关闭开关65激活渐晕光束的镜头
>`o;hTS PCs`aVZ ;q&2$Mb 另外,也可通过声明一组VFIELD参数。在CW中输入FVF 0 .5 .8 .9 1;程序会计算出通光孔径的五个视场点的渐晕因素。(在使用FVF命令之前,必须为镜头指定一个实际光阑值。)
%Gc)$z/Wd 4ZCD@C PAD显示了应该呈现的渐晕光束,如图8所示。
图8 通光减小孔径和VFIELD来进行渐晕
*EllE+M{n 5"mH6%d :8 aM!%EaT 6O|
rI>D 前面我们声明的孔径都是硬孔径CAO。现在,在WS中输入CFREE,单击‘Update’。镜头再次有默认孔径。这次是根据VFIELD光瞳计算的,如图9所示。
Pt\GVWi_t b<\aJb{2 图9 分配默认孔径以符合VFIELD应用渐晕的镜头
;nbbKQ]u
现在,我们移除VSET指令重新优化,并进行边缘控制,你也可以通过边缘向导(MEW)调整边缘几何,如图10所示。
图10 最后三片式镜头。正确分配渐晕和孔径。
图10中相应的局部镜头放大结构
K6G+sBw[ WAP 3和VFIELD设置渐晕后的镜头看起来大致相同,它们的区别在哪?答:
软件每次进行光线追迹时,WAP 3 都需要瞄准五条光线。这是一个相当缓慢的选择。而VFIELD 在完成这个计算之后,后续仅需要对准主光线,在请求的视场上进行快速插值 。