渐晕输入和输出
参考Donald Dilworth《Lens Design Automatic and quasi-autonomous computational methods and techniques》书中第十一章
1`7zYW&L 打开保存在路径C:\Synopsys\Dbook\中示例镜头C11L1。
d)vP9vXy 只需在CW窗口键入:SYNOPSYS AI>FETCH C10L1,并点击“Enter”键。然后点击按钮

得到PAD图,如图1所示,它是一个具有渐晕的三片式
镜头。由图1可知,上下视场点(绿色和蓝色)的
光束尺寸远小于轴上光束(红色)。
图1 具有渐晕的三片式镜头
\PE;R.v_: 图1中相应的局部放大镜头结构
#gV n7wq jj[6 oNKE1 在CW中输入:SYNOPSYS AI>LE,打开该镜头的.RLE文件,代码如下:
`?Q
p>t RLE !读取镜头
d:';s~ ID COOKE TRIPLET F/4.5 670 !镜头标识(ID COOKE TRIPLET F/4.5)和日志编码(670)
h[]9F.[ FNAME 'C11L1.RLE ' !指定文件名为'C11L1.RLE'
Gf\h7)T\ LOG 670 !日志编码;每次SYNOPSYS运行都会自动分配一个日志编码,并自动增加;
@M"gEeI9 WAVL .6562700 .5875600 .4861300 !定义可见光三个
波长,按长波到短波的顺序,默认权重为1
7v%c. APS -3 !定义表面3为实际光阑面;负号(-)表明真实光瞳有效;
-n05Z@7 WAP 3 !定义广角光瞳选项3
-Ty~lZ)TDT UNITS MM !定义
透镜单位为毫米
v,ssv{gU OBB 0.000000 20.0000000 5.5550000 -2.9848806206109 0.0000000 0.0000000 5.5550000
|2q3spd !定义物体类型为OBB;第一个数字表明物体在无穷远处,边缘
光线角度UMP0为0;第二个数字为半视场角;第三个数字为半孔径YMP1;第四个数字为表面1上主光线高度YP1;后面三个值是光线在X-Z平面上的相应值。
'vBZh1`p 0 AIR !表面0(物面)的折射率为1
Vbl-Ff 1 CAO 4.69068139 0.00000000 0.00000000 !表面1外孔径为4.69068139;X方向偏心为零;Y 方向偏心为零
=Hd yra 1 RAD 21.4939500000000 TH 2.00000000 !表面1半径为21.49395mm,厚度为2mm;
PoF3fy%. 1 N1 1.61726800 N2 1.62040602 N3 1.62755182 !表面1,波长1折射率(N1)为1.61726800,波长2折射
7_i8'(`` 率为1.62040602,波长3折射率为1.62755182;
~'_cBJ
'XD 1 CTE 0.630000E-05 !定义表面1的热膨胀系数(CTE)
S\TXx79PhC 1 GTB S 'SK16 ' !定义表面1的玻璃
材料,S-玻璃库Schott,'SK16 ' -玻璃类型
w2nReB z 2 CAO 4.25560632 0.00000000 0.00000000 !表面2外孔径为 4.25560632,X方向无偏心,Y方向无偏心
06pvI} 2 RAD -124.0387000000000 TH 5.25509000 AIR !定义表面2半径,厚度,折射率
bGWfMu=n 3 CAO 3.19251725 0.00000000 0.00000000 !表面3外孔径为3.19251725
l\s!A&L 3 RAD -19.1051800000000 TH 1.25000000 !定义表面3半径,厚度
X@`a_XAfd p'
>i3T( 3 N1 1.61163844 N2 1.61658424 N3 1.62846980 !表面3的三个波长折射率
W91yj: 3 CTE 0.830000E-05 !表面3的热膨胀系数
GF ux?8A:% 3 GTB S 'F4 ' !表面3的玻璃材料
!y_{mE?V( 4 CAO 3.15978037 0.00000000 0.00000000 !表面4的外孔径大小
5YD~l(,S1] 4 RAD 21.9794700000000 TH 4.93473000 AIR !表面4的半径,厚度,折射率
~w>h#{RB 5 CAO 3.48158127 0.00000000 0.00000000 !表面5的外孔径大小
2 kDsIEA 5 RAD 328.3317499999989 TH 2.25000000 !表面5的半径,厚度;
J3 _aHI 5 N1 1.61726800 N2 1.62040602 N3 1.62755182 !表面5的三个波长折射率;
!?>V^#c 5 CTE 0.630000E-05 !表面5的热膨胀系数
6CBk=)qH 5 GID 'SK16 ' !表面5的玻璃类型为'SK16'
h+[6i{ 5 PIN 1 !表面5拾取表面1的折射率
-G,}f\Cg 6 CAO 4.00000022 0.00000000 0.00000000 !表面6的外孔径大小
WBE>0L 6 RAD -16.7537700000000 TH 43.24303731 AIR !表面6的半径,厚度,折射率
T^}UE< 6 TH 43.24303731 !表面6的厚度
E^i]eK*" 6 YMT 0.00000000 !YMT求解在表面7上指定的轴向边缘光线高度为0时所对应的厚度
OH\^j1x9I 7 CV 0.0000000000000 TH 0.00000000 AIR !表面7的曲率,厚度,折射率
y+(\:;y$7 END !以END结束
Py)ZHML W" 5nS =d% qNEp3WY: |u&cN-}C d WAP3选项调整入射光瞳尺寸,使得每个视场点处的边缘光线清除所有定义的透镜孔径。除了表面7之外的所有表面都被分配了一个硬通光孔径CAO。
fM;,9 WAP3选项是处理渐晕的一种方法。但是在
优化过程中,当镜头变化时,光束的大小可在每个表面发生变化,当你不知道完成后的光束大小时,将硬CAO指定到表面是无意义的。因此,在优化过程中永远不要使用WAP 3选项,只在必要时使用。
L|'^P3#7` So aqmY;+ !__0Vk[s ,S-h~x 相反,
采用分段渐晕。首先删除所有CAO和声明WAP,使用代码如下:
@RoZd? CHG !改变镜头
bU!
v CFREE !移除光阑孔径
79h~w{IT@ WAP 0 !默认近轴光瞳
8 t5kou]h END !以END结束
"}]$ag!`q$ !
xCo{U= m^_=^z+ 运行代码后,得到具有默认孔径且无渐晕的三片式 镜头,如图2所示。镜头像质更差。
图2 具有默认孔径且无渐晕的三片式镜头,像质更差
)j_El ]? 在CW中键入POP命令,显示 表面6上有YMT求解而无曲率求解:
c2npma]DZ 我们增加一个透镜,使镜头以F/4.5工作,因此UMC求解值为-0.1111。
Mkz_.;3 代码如下:
5f-b>=02 CHG !改变镜头
~ nsb 6 UMC -.1111 !UMC求解在表面6的曲率,并给出相对于光轴的近轴轴向边缘光线角U的规定
Gnkar[oa& 值。U的正切值为1/(2*FNUM)=0.1111,负号表示边缘光线在图像下端。
Kw
-SOFE STORE 3 !将镜头结果保存在透镜库3的位置
-R`{]7V =gB5JB<}2 }|P3(*S 在CW中键入AEE命令,新建一个宏编辑器。优化宏代码如下:
xe`^)2z LOG !日志编码,每次SYNOPSYS运行都会自动分配一个日志编码
?E([Nc0T PANT !
参数输入
Ww7Ya]b.k VLIST RAD ALL !改变所有表面半径
1 R5pf VLIST TH ALL !改变所有表面厚度
" 9Gn/-V> END !以END结束
-pu5O9
@ AcH-TIgM/ (eN7s_ AANT !
像差输入
6Z2 ,:j; AEC !自动控制玻璃元件和空气间隙的边缘厚度,防止边缘厚度太薄,默认值为1mm
y0 * rY ACC !自动控制玻璃元件中心厚度,防止中心厚度太厚,默认值为1inch
g68p9#G GSR .5 10 5 M 0 !校正轴上视场光线网格中的5条光线产生的XC像差;0.5-孔径占比;10-权重;
nr!N%Hi 5-光线数,M-多色;0-轴上视场;
Ed9Uw7 GNR .5 2 3 M .7 !校正0.7视场光线网格中的光线产生的YC和XC像差;
"s+4!, k GNR .5 1 3 M 1 !校正全视场光线网格中的光线产生的YC和XC像差;
v4P"|vZ$& END !以END结束
JB_fS/I 7;'33Bm* SNAP !每次迭代一次PAD更新一次
%$!3Pbui SYNO 30 !迭代次数为30次
'YL[s _P;D.>? (`P\nnb yYG<tUG; 运行优化宏后,消除了边缘羽化,镜头结构如图3所示。由图可知,像差失控,特别是全视场。
图3 消除边缘羽化的三片式镜头
3N7H7(IR +EETo): 需要进一步优化,将光束大小设置为全视场光线高度的40%,可通过向AANT中添加VSET指令来完成,代码如下:
R@vcS=m7 AANT
fr@F7s5} AEC
]R__$fl`8 ACC
{Cx5m VSET 0.4 !设置渐晕,指定光束大小为全视场光线的正常高度的40%;此命令须在生成光线命令之前
tdy2ZPVtTV GSR .5 10 5 M 0
M+/xw8}a GNR .5 2 3 M .7
#~ u0R>= GNR .5 1 3 M 1
8K 3dwoT
END
aB9!}3@ MY&Jdmga 图4 三片式镜头重新优化,预期渐晕到40%的孔径
n<I{x^! UtZ,q!sg 点击图标

打开WS工作表,在编辑窗格中输入CFIX指令,点击按钮'Update'。现在,为每个表面
zZ5:)YiW- 分配了一个硬孔径CAO,其大小与当前有效的默认CAO相同。
ZO0 Ee1/ W yL+HB} tK#R`AQ 点击镜头的表面6,选择CAO半径,单击‘SEL’按钮。将顶部滑块指定给该孔径半径。将滑块向左移动,减小孔径。在全视场观察TFAN,在TFAN左侧40%的位置出现渐晕。如图5所示。
图5 调节表面6的孔径,镜头将在TFAN的左侧产生所需的渐晕
_VtQMg|u .HqFdsm 在表面1上执行相同的操作,在TFAN右侧出现渐晕,如图6所示。
图6 调节表面1的孔径,镜头将在TFAN的右侧产生所需的渐晕
C8N)!5(A !rvEo =^ )Fw/Cu 但是为什么PAD显示的仍然是原始的、无渐晕的光束?
+.G"ool 我们可通光关闭开关65激活渐晕;也可在CW中键入指令WAP 3来激活渐晕。
图7 关闭开关65激活渐晕光束的镜头
qQ&uU7,# 8.E"[QktZ 7s9h:/Lu 另外,也可通过声明一组VFIELD参数。在CW中输入FVF 0 .5 .8 .9 1;程序会计算出通光孔径的五个视场点的渐晕因素。(在使用FVF命令之前,必须为镜头指定一个实际光阑值。)
qUe
_B
6@S6E(^ PAD显示了应该呈现的渐晕光束,如图8所示。
图8 通光减小孔径和VFIELD来进行渐晕
sDY~jP[Oa gq?:n.;TY TkbaoD PNU(;&2< 前面我们声明的孔径都是硬孔径CAO。现在,在WS中输入CFREE,单击‘Update’。镜头再次有默认孔径。这次是根据VFIELD光瞳计算的,如图9所示。
JKfG/z| O] _4pP 图9 分配默认孔径以符合VFIELD应用渐晕的镜头
j0jl$^
现在,我们移除VSET指令重新优化,并进行边缘控制,你也可以通过边缘向导(MEW)调整边缘几何,如图10所示。
图10 最后三片式镜头。正确分配渐晕和孔径。
图10中相应的局部镜头放大结构
x&}]8S) WAP 3和VFIELD设置渐晕后的镜头看起来大致相同,它们的区别在哪?答:
软件每次进行光线追迹时,WAP 3 都需要瞄准五条光线。这是一个相当缓慢的选择。而VFIELD 在完成这个计算之后,后续仅需要对准主光线,在请求的视场上进行快速插值 。