"Modern Lens Design" 2nd Edition by Warren J. Smith 5k)/SAU0
[z5pqd-
Contents of Modern Lens Design 2nd Edition &$:1rA_v
"
;8H;U`
1 Introduction |$f.Qs~?
1.1 Lens Design Books >;-.rJFr
1.2 Reference Material ifHQ2Ug9
1.3 Specifications d%1j4JE{
1.4 Lens Design Y(h86>z*w
1.5 Lens Design Program Features vR[XbsNM
1.6 About This Book Y`eU WCD
2_'{f1bVxz
2 Automatic Lens Design ]+@ @{?0
2.2 The Merit Function A NR?An
2.3 Local Minima :D|"hJ
2.4 The Landscape Lens +*Y/+.4WE$
2.5 Types of Merit Function Zi<Y?Vm/,O
2.6 Stagnation w~{NNK;"j
2.7 Generalized Simulated Annealing F%Oy4*4
2.8 Considerations about Variables for Optimization i|?EgGFG
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems X0wvOs:
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits pN|BtrN{
2.11 Spectral Weighting 7:awUoV8f
2.12 How to Get Started O10,h(O
>rJ9^rS
3 Improving a Design [Q9#44@{S;
3.1 Lens Design Tip Sheet: Standard Improvement Techniques lgWEB3f
.
3.2 Glass Changes ( Index and V Values ) W@Et
3.3 Splitting Elements xF.n=z
3.4 Separating a Cemented Doublet lR3`4bHA
3.5 Compounding an Element YflM*F`
3.6 Vignetting and Its Uses _=!Rl#
3.7 Eliminating a Weak Element; the Concentric Problem sl?> X)}
3.8 Balancing Aberrations A/:^l%y,GZ
3.9 The Symmetrical Principle g-)izPX
3.10 Aspheric Surfaces &m<:&h& b
!6.}{6b
4 Evaluation: How Good is This Design pbc<326X"
4.1 The Uses of a Preliminary Evaluation /&1FgSARK
4.2 OPD versus Measures of Performance H%y!lR{c^D
4.3 Geometric Blur Spot Size versus Certain Aberrations r I)Y
W0
4.4 Interpreting MTF - The Modulation Transfer Function 4OX|pa
4.5 Fabrication Considerations 4k%y*L
Fq>tl 64A
5 Lens Design Data nbd-f6F6
5.1 About the Sample Lens Designs LkvR]^u0
5.2 Lens Prescriptions, Drawings, and Aberration Plots Ix~_.&
5.3 Estimating the Potential of a Redesign %?
87#|
5.4 Scaling a Desing, Its Aberrations, and Its MTF 3'3E:}o|
5.5 Notes on the Interpretation of Ray Intercept Plots A:Y
([
5.6 Various Evaluation Plot SlK6KnX
vNo(`~]c
6 Telescope Objective GS_+KR\
6.1 The Thin Airspaced Doublet [{@0/5i
6.2 Merit Function for a Telescope Objective jgpSFb<9F
6.3 The Design of an f/7 Cemented Doublet Telescope Objective "wqN,}bj\
6.4 Spherochromatism ^/c v8M=
6.5 Zonal Spherical Aberration <yNu/B.M
6.6 Induced Aberrations Kd,8PV*_
6.7 Three-Element Objectives +hiskV@ v
6.8 Secondary Spectrum (Apochromatic Systems) ^UJB%l
6.9 The Design of an f/7 Apochromatic Triplet WK$d<:"
6.10 The Diffractive Surface in Lens Design Q6qIx=c4
6.11 A Final Note ) oypl+y
ut/3?E1 Z
7 Eyepieces and Magnifiers ]]"O)tWHj
7.1 Eyepieces %mF:nU4
7.2 A Pair of Magnifier Designs -/)>DOgUq
7.3 The Simple, Classical Eyepieces zvEofK
7.4 Design Story of an Eyepiece for a 6*30 Binocular {~*^jS']5
7.5 Four-Element Eyepieces 'aV/\a:*
7.6 Five-Element Eyepieces 2?c##Izn
7.7 Very High Index Eyepiece/Magnifier r3OR7f[
7.8 Six- and Seven-Element Eyepieces )/87<Y;o
U=ek_FO
8 Cooke Triplet Anastigmats Q{K'#
8.1 Airspaced Triplet Anastigmats ,y>Sq +
8.2 Glass Choice h&|PHI
8.3 Vertex Length and Residual Aberrations MJ.K,e
8.4 Other Design Considerations mZG)#gW[
8.5 A Plastic, Aspheric Triplet Camera Lens uE'O}Y95
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet Nv[MU@Tv
8.7 Possible Improvement to Our “Basic” Triplet sV']p#HK0
8.7 The Rear Earth (Lanthanum) Glasses \-`,fat
8.9 Aspherizing the Surfaces 70Z#Ej
8.10 Increasing the Element Thickness I,8f{T!O@"
n5qg6(Tl]
9 Split Triplets od=x?uBVd
BG&XCn5g|
10 The Tessar, Heliar, and Other Compounded Triplets WPu-P
10.1 The Classic Tessar 9'"
F7>d
10.2 The Heliar/Pentac #Ch*a.tI@
10.3 The Portrait Lens and the Enlarger Lens |^09ny|
10.4 Other Compounded Triplets -xVp}RLT
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar .91@T.
(,`R >Dk
11 Double-Meniscus Anastigmats Q4R*yRk
11.1 Meniscus Components ;07>ZH%
11.2 The Hypergon, Totogon, and Metrogon % S vfY {
11.3 A Two Element Aspheric Thick Meniscus Camera Lens iZ( U]
11.4 Protar, Dagor, and Convertible Lenses E3vYVuw
11.5 The Split Dagor fHV%.25
11.6 The Dogmar sF4+(9 =
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens je#OV,uHM
GZt L-
12 The Biotar or Double-Gauss Lens c>b!{e@*
12.1 The Basic Six-Element Version E;MelK<8(
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 0d|DIT#>?
12.3 The Seven-Element Biotar - Split-Rear Singlet BB9+d"Sq
12.4 The Seven-Element Biotar - Broken Contact Front Doublet G4;5$YGG
12.5 The Seven-Element Biotar - One Compounded Outer Element Rt+ak}
12.6 The Eight-Element Biotar umo<9Y
12.7 A “Doubled Double-Gauss” Relay 2 ":W^P
CqVeR';2
13 Telephoto Lenses %
|^V)
13.1 The Basic Telephoto ;R[w}#Sm
13.2 Close-up or Macro Lenses tv 7"4$T
13.3 Telephoto Designs k}&7!G@T
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch A)%!9i)
+bDBc?HZ{$
W/@-i|v
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 7.y35y
14.1 The Reverse Telephoto Principle H.)Y*zK0.
14.2 The Basic Retrofocus Lens :9~LYJ
?
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses DJJd_
1@:BUE;jZ
15 Wide Angle Lenses with Negative Outer Lenses ss0`9:z
g-LMct8$
16 The Petzval Lens; Head-up Display Lenses M/a40uK
16.1 The Petzval Portrait Lens ,_M
16.2 The Petzval Projection Lens M*
0zvNg
16.3 The Petzval with a Field Flattener +(U;+6 b
16.4 Very Height Speed Petzval Lenses XVfw0-O
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems P
y!$r
:\F1S:&P
17 Microscope Objectives ,^1B"#0{C<
17.1 General Considerations $)#?4v<
17.2 Classic Objective Design Forms; The Aplanatic Front %'w?fqk
17.3 Flat-Field Objectives d=C&b]
17.4 Reflecting Objectives 91\Sb:>
17.5 The Microscope Objective Designs S;K5JBX0#
/<VR-yr
18 Mirror and Catadioptric Systems j"r7M|Z+V
18.1 The Good and Bad Points of Mirrors =&t]R?
F
18.2 The Classic Two-Mirror Systems V\nj7Gr:sF
18.3 Catadioptric Systems t2LX@Q"
18.4 Aspheric Correctors and Schmidt Systems -P:o ^_)g
18.5 Confocal Paraboloids XGb*LY+Db6
18.6 Unobscured Systems Tf40lv+{
18.7 Design of a Schmidt-Cassegrain “from Scratch” BZOB\Ym
POI|#[-V
19 Infrared and Ultraviolet Systems z 4qEC
19.1 Infrared Optics hw({>cH\
19.2 IR Objective Lenses v\2-%
19.3 IR Telescope QV[#^1
19.4 Laser Beam Expanders $d*PY_
19,5 Ultraviolet Systems ^AF~k#R
19.6 Microlithographic Lenses |)*9BN
?0tm{qP
20 Zoom Lenses :MihVL F
20.1 Zoom Lenses RxE.t[
20.2 Zoom Lenses for Point and Shoot Cameras ?*^HZ~O1
20.3 A 20X Video Zoom Lens t{-*@8Ke
20.4 A Zoom Scanner Lens |OiM(E(
20.5 A Possible Zoom Lens Design Procedure x~QZVL=:
jG`,k*eUrJ
21 Projection TV Lenses and Macro Lenses |Ae7wXOs
21.1 Projection TV Lenses $ftxid8
21.2 Macro Lenses _BoYyJQH
i ?%_Pu
22 Scanner/ , Laser Disk and Collimator Lenses qVssw* GDB
22.1 Monochromatic Systems cD t|v~
22.2 Scanner Lenses 9]vy#a#
22.3 Laser Disk, Focusing, and Collimator Lenses g(C/J9J
?c<uN~fC=
23 Tolerance Budgeting xW|8-q
23.1 The Tolerance Budget >dJ[1s]
23.2 Additive Tolerances N~ajrv}kd
23.3 Establishing the Tolerance Budget Q7]bUPDO
7J1f$5$m5
24 Formulary 3 MCV?"0
24.1 Sign Conventions, Symbols, and Definitions f#McTC3C
24.2 The Cardinal Points
I;9C":'#
24.3 Image Equations XS$#\UQ
24.4 Paraxial Ray Tracing (Surface by Surface) \}J"`J\Q
24.5 Invariants y@(EGfI
24.6 Paraxial Ray Tracing (Component by Component) \M;cF"e-S
24.7 Two-Componenet Relationships lNz1|nS(Kd
24.8 Third-Order Aberrations – Surface Contributions 8g {;o7
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs WmOu#5*;
24.10 Stop Shift Equations ^CK
D[s
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces jx}7/
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) ?pWda<&
6_&S
?yA
9iV9q]($0
Glossary DzIV5FG
Reference 6rM{r>
Index