"Modern Lens Design" 2nd Edition by Warren J. Smith un6W|{4]
6mZpyt
Contents of Modern Lens Design 2nd Edition eJOo~HIWQ
}8.$)&O$^
1 Introduction @zR_[s
1.1 Lens Design Books ;XY#Jl>tg
1.2 Reference Material {KqW<X6Hp
1.3 Specifications -?T|1FA,
1.4 Lens Design MMRO@MdfV
1.5 Lens Design Program Features "=f,4Zbj
1.6 About This Book ORo +]9)Yv
+DT
tKj
2 Automatic Lens Design }L Brk0]
2.2 The Merit Function -J!k|GK#MX
2.3 Local Minima blV'-Al
2.4 The Landscape Lens Y$q--JA
2.5 Types of Merit Function /4BYH?*
2.6 Stagnation Ky7-6$
2.7 Generalized Simulated Annealing K!jau|FS
2.8 Considerations about Variables for Optimization &)Wm rF
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems \LS s@\$
g
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits mpCKF=KL.
2.11 Spectral Weighting P>6wr\9i[
2.12 How to Get Started Q!Dr3x
[Az^i>iH
3 Improving a Design 5PHAd4=bJ
3.1 Lens Design Tip Sheet: Standard Improvement Techniques !]f:dWSLB
3.2 Glass Changes ( Index and V Values ) {-c[w&q
3.3 Splitting Elements $_Lcw"xO
3.4 Separating a Cemented Doublet `Oi6o[a
3.5 Compounding an Element l$p"%5]_
3.6 Vignetting and Its Uses Yi"jj;!^S
3.7 Eliminating a Weak Element; the Concentric Problem IW|1)8d
3.8 Balancing Aberrations N'5!4JUI
3.9 The Symmetrical Principle YKj PE
3.10 Aspheric Surfaces oX]c$<w5
}WkR-5N
4 Evaluation: How Good is This Design bF3}L=z
4.1 The Uses of a Preliminary Evaluation DOo34l6#
4.2 OPD versus Measures of Performance zI>,A|yy
4.3 Geometric Blur Spot Size versus Certain Aberrations ^nL_*+V`f
4.4 Interpreting MTF - The Modulation Transfer Function r+l3J>:K
4.5 Fabrication Considerations 2ap0/l[
/Big^^u
5 Lens Design Data 0SLn0vD!
5.1 About the Sample Lens Designs Oz,/y3_
5.2 Lens Prescriptions, Drawings, and Aberration Plots UD r@
5.3 Estimating the Potential of a Redesign 78+PG(Q_M
5.4 Scaling a Desing, Its Aberrations, and Its MTF [.iz<Yh
5.5 Notes on the Interpretation of Ray Intercept Plots [[:wSAO>6'
5.6 Various Evaluation Plot 4[]4KKO3Q2
?Da!QH
>,]
6 Telescope Objective szb],)|18
6.1 The Thin Airspaced Doublet ~); 7D'[
6.2 Merit Function for a Telescope Objective l7JY`x
6.3 The Design of an f/7 Cemented Doublet Telescope Objective A0Hs d
6.4 Spherochromatism |4FvPR[
6.5 Zonal Spherical Aberration E^jb#9\R
6.6 Induced Aberrations m]U`7!
6.7 Three-Element Objectives {7X80KI
6.8 Secondary Spectrum (Apochromatic Systems) wg,w;Gle
6.9 The Design of an f/7 Apochromatic Triplet G_x<2E"d
6.10 The Diffractive Surface in Lens Design V`"A|Y
6.11 A Final Note Y;XEC;PXD
fL&bN[XA"$
7 Eyepieces and Magnifiers %,*{hhfu
7.1 Eyepieces co%ttH\ n
7.2 A Pair of Magnifier Designs {^
^)bf|1'
7.3 The Simple, Classical Eyepieces D@>^_cTO24
7.4 Design Story of an Eyepiece for a 6*30 Binocular h=~TgTv
7.5 Four-Element Eyepieces &<sDbNS
7.6 Five-Element Eyepieces /g!', r,
7.7 Very High Index Eyepiece/Magnifier t/aT
7.8 Six- and Seven-Element Eyepieces <Cw)S8t
$/Q*@4t
8 Cooke Triplet Anastigmats %<8lLRl
8.1 Airspaced Triplet Anastigmats 3Ga!)
8.2 Glass Choice TM|ycS'
8.3 Vertex Length and Residual Aberrations ]MP6VT
8.4 Other Design Considerations G? "6[w/p
8.5 A Plastic, Aspheric Triplet Camera Lens Ytnk^/Z1L
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet |^i+Srh
8.7 Possible Improvement to Our “Basic” Triplet >h7qI-
8.7 The Rear Earth (Lanthanum) Glasses (TV ye4Z
8.9 Aspherizing the Surfaces qJN2\e2~f
8.10 Increasing the Element Thickness eZm,K'/!
~sSlfQWMzy
9 Split Triplets jdGoPa\
5Vzi{y/bL
10 The Tessar, Heliar, and Other Compounded Triplets f6ad@2
10.1 The Classic Tessar 1/YWDxo,
10.2 The Heliar/Pentac @4D$Xl
10.3 The Portrait Lens and the Enlarger Lens O&?i8XsB
10.4 Other Compounded Triplets {(#>%f+|C
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar q(J3fjY)
8`*Wl;9u
11 Double-Meniscus Anastigmats --S2lN/:T
11.1 Meniscus Components A-&C.g
11.2 The Hypergon, Totogon, and Metrogon c6;tbL
11.3 A Two Element Aspheric Thick Meniscus Camera Lens XOzd{
11.4 Protar, Dagor, and Convertible Lenses pN"d~Z8
11.5 The Split Dagor MGd 7Ont
11.6 The Dogmar &JM|u ww?1
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens dw8Ce8W
;k<g#She
12 The Biotar or Double-Gauss Lens d3AOuVUf
12.1 The Basic Six-Element Version ~JsTHE$F
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens <8>gb!D G
12.3 The Seven-Element Biotar - Split-Rear Singlet jd|? aK;(
12.4 The Seven-Element Biotar - Broken Contact Front Doublet k"V| f&
12.5 The Seven-Element Biotar - One Compounded Outer Element r(IQ)\GR
12.6 The Eight-Element Biotar D}wM$B@S
12.7 A “Doubled Double-Gauss” Relay t%wC~1
wvum7K{tI
13 Telephoto Lenses V6Y:l9
13.1 The Basic Telephoto {(i>$RG_
13.2 Close-up or Macro Lenses pzP~,cdf
13.3 Telephoto Designs #N?EPV$
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch [ 44d(P'
ika/ GG
jiMI&cl
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 18 pi3i[
14.1 The Reverse Telephoto Principle %:2<'s2Si
14.2 The Basic Retrofocus Lens *wcb 5p
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses EM+#h'%-
"k(Ee
15 Wide Angle Lenses with Negative Outer Lenses /ov&h;
w%&lCu@v
16 The Petzval Lens; Head-up Display Lenses UUGwXq96i
16.1 The Petzval Portrait Lens Iq`:h&'!L
16.2 The Petzval Projection Lens rYbb&z!u
16.3 The Petzval with a Field Flattener 00 Qn1
16.4 Very Height Speed Petzval Lenses {%ZD^YSA
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems JW ;DA E<
r7r>1W%4
17 Microscope Objectives <taN3
17.1 General Considerations 3zU!5tg
17.2 Classic Objective Design Forms; The Aplanatic Front <J4|FOz!=
17.3 Flat-Field Objectives 7KOM,FWKe
17.4 Reflecting Objectives ]4 2bd
17.5 The Microscope Objective Designs &o>ctf.x
dHV3d'.P
18 Mirror and Catadioptric Systems p.kJNPO\@
18.1 The Good and Bad Points of Mirrors gz-X4A"
18.2 The Classic Two-Mirror Systems KiU/N$E
18.3 Catadioptric Systems <\<[J0
18.4 Aspheric Correctors and Schmidt Systems 2`qO'V3Q
18.5 Confocal Paraboloids z;GR(;w/
18.6 Unobscured Systems ;q&6WO
18.7 Design of a Schmidt-Cassegrain “from Scratch” t(YrF,
N6Mo|
19 Infrared and Ultraviolet Systems Z<6XB{Nh\
19.1 Infrared Optics ?z>7&
19.2 IR Objective Lenses Zi5d"V[}T
19.3 IR Telescope ;v0M
::
19.4 Laser Beam Expanders 1Uz sw
19,5 Ultraviolet Systems L P?E
19.6 Microlithographic Lenses jEwfa_Q%
],l
w
20 Zoom Lenses ##~";j
20.1 Zoom Lenses [EUp4%Z #
20.2 Zoom Lenses for Point and Shoot Cameras ,;LxFS5\
20.3 A 20X Video Zoom Lens B -XM(Cj
20.4 A Zoom Scanner Lens bkfwsYZx
20.5 A Possible Zoom Lens Design Procedure C'mYR3?m;
CPssk,q~C
21 Projection TV Lenses and Macro Lenses i`-,=RJ
21.1 Projection TV Lenses #p@8m_g
21.2 Macro Lenses "L'0"
VPG+]>*
22 Scanner/ , Laser Disk and Collimator Lenses xxWrSl`fB
22.1 Monochromatic Systems dLb9p"EE#
22.2 Scanner Lenses (\^| @
22.3 Laser Disk, Focusing, and Collimator Lenses ^V]DQ%v"I
J
ik+t\A
23 Tolerance Budgeting <T?H
H$es)
23.1 The Tolerance Budget "J|_1! 9
23.2 Additive Tolerances WqX#T
23.3 Establishing the Tolerance Budget aChyl;#E
88\0opL-
24 Formulary 8YNii-pl
24.1 Sign Conventions, Symbols, and Definitions CG!/Lbd
24.2 The Cardinal Points i[obQx S94
24.3 Image Equations gd~# uR\
24.4 Paraxial Ray Tracing (Surface by Surface) VJ1(|v{D4[
24.5 Invariants rv>K0= t0
24.6 Paraxial Ray Tracing (Component by Component) 2$8#ePyq*
24.7 Two-Componenet Relationships qI-q%]l
24.8 Third-Order Aberrations – Surface Contributions nO{@p_3mi
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs n3w(zB
24.10 Stop Shift Equations xlQl1lOX
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces t Dx!m~[
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) HZ$q`e
F0,-7<G
d4@\5<
Glossary L`E^BuP/
Reference ,0ZkE}<=w
Index