"Modern Lens Design" 2nd Edition by Warren J. Smith e$>.x<
Eq
@dE|UZ=(
Contents of Modern Lens Design 2nd Edition 9ui_/[K
aRg/oA4}
1 Introduction [eL?O;@BD
1.1 Lens Design Books v!(BS,
1.2 Reference Material y
BF3Lms
1.3 Specifications W6f?/{Oo8
1.4 Lens Design
x,YC/J
1.5 Lens Design Program Features ;taTdzR_
1.6 About This Book '6i"pJ0%
Arh0m. w
2 Automatic Lens Design @!/w'k8
2.2 The Merit Function +e_NpC
2.3 Local Minima 2Jo'!|]
2.4 The Landscape Lens $ ;cZq
2.5 Types of Merit Function >mRA|0$
2.6 Stagnation ^qXc%hj g
2.7 Generalized Simulated Annealing B3[;}8u>
2.8 Considerations about Variables for Optimization ju#/ {V;D
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ~oO>6
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 8Z{&b,Y4L
2.11 Spectral Weighting c6gRXp'ID
2.12 How to Get Started 9%aBW7@SK
B-`d7c5
3 Improving a Design &Ji!*~sE
3.1 Lens Design Tip Sheet: Standard Improvement Techniques d`9%:2qE
3.2 Glass Changes ( Index and V Values ) @,0W(
3.3 Splitting Elements CDcZ6.f
3.4 Separating a Cemented Doublet \C;cs&\Q
3.5 Compounding an Element ^(7<L<H
3.6 Vignetting and Its Uses <PL94
3.7 Eliminating a Weak Element; the Concentric Problem T+p?VngF
3.8 Balancing Aberrations urmx})=
3.9 The Symmetrical Principle \zioIfHm
3.10 Aspheric Surfaces b^b@W^\hn
{xb8H
4 Evaluation: How Good is This Design (VeX[*}I
4.1 The Uses of a Preliminary Evaluation iev02 8M
4.2 OPD versus Measures of Performance LAqmM3{fA
4.3 Geometric Blur Spot Size versus Certain Aberrations 2(V;OWY(@
4.4 Interpreting MTF - The Modulation Transfer Function Rn6;@Cw
4.5 Fabrication Considerations yT<6b)&*&
`7<4]#b^o
5 Lens Design Data *aF#on{
5.1 About the Sample Lens Designs C}grY5:
5.2 Lens Prescriptions, Drawings, and Aberration Plots %D|p7&
5.3 Estimating the Potential of a Redesign uCGJe1!Ai>
5.4 Scaling a Desing, Its Aberrations, and Its MTF tow0/Jt
5.5 Notes on the Interpretation of Ray Intercept Plots *
S4IMfp
5.6 Various Evaluation Plot apsR26\^
h:{rjXK
6 Telescope Objective j} ^?3<
6.1 The Thin Airspaced Doublet 7=yV8.cD
6.2 Merit Function for a Telescope Objective x {Z_rD
6.3 The Design of an f/7 Cemented Doublet Telescope Objective .$nQD.X
6.4 Spherochromatism *`.h8gTD,
6.5 Zonal Spherical Aberration =+24jHs
6.6 Induced Aberrations :l~^un|<2Y
6.7 Three-Element Objectives S8-3Nv'
6.8 Secondary Spectrum (Apochromatic Systems) 4cC
6.9 The Design of an f/7 Apochromatic Triplet TC 7&IqT
6.10 The Diffractive Surface in Lens Design 1b*Me'
6.11 A Final Note 49S*f
;!H<W[
7 Eyepieces and Magnifiers z7B>7}i-
7.1 Eyepieces 9K~0:c
7.2 A Pair of Magnifier Designs T](N
^P
7.3 The Simple, Classical Eyepieces #O3Y#2lI
7.4 Design Story of an Eyepiece for a 6*30 Binocular :iW+CD)j
7.5 Four-Element Eyepieces pW{Q%"W
7.6 Five-Element Eyepieces @Z9X^Y+u^h
7.7 Very High Index Eyepiece/Magnifier (`C#Tq
7.8 Six- and Seven-Element Eyepieces cE(P^;7D
dw'&Av'
|E
8 Cooke Triplet Anastigmats uL!QeY>k\
8.1 Airspaced Triplet Anastigmats b
EB3#uc
8.2 Glass Choice @ol}~&"
8.3 Vertex Length and Residual Aberrations _:(RkS!x
8.4 Other Design Considerations @)[Q6w`x
8.5 A Plastic, Aspheric Triplet Camera Lens x"/DCcZ
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet xi5G?r
8.7 Possible Improvement to Our “Basic” Triplet Udj!y$?
8.7 The Rear Earth (Lanthanum) Glasses gumT"x .^
8.9 Aspherizing the Surfaces 4yOYw*X
8.10 Increasing the Element Thickness \YXzq<7
Tp
vq5Cz
9 Split Triplets qUNK Dt
j1[Ng #.
10 The Tessar, Heliar, and Other Compounded Triplets .`./MRC
10.1 The Classic Tessar )\nKr;4MH
10.2 The Heliar/Pentac B49:
R>
10.3 The Portrait Lens and the Enlarger Lens \gz(C`4{j
10.4 Other Compounded Triplets XPJsnu
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar Q,pnh!.-c
-"Mq<XO&51
11 Double-Meniscus Anastigmats =|}_ASbzw
11.1 Meniscus Components I8ZBs0sfF{
11.2 The Hypergon, Totogon, and Metrogon }57s
11.3 A Two Element Aspheric Thick Meniscus Camera Lens NUSb7<s,&Y
11.4 Protar, Dagor, and Convertible Lenses S($8_u$U
11.5 The Split Dagor AvP$>Alc
11.6 The Dogmar *dmBJi}
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens tVI6GXH
dWc'R wL
12 The Biotar or Double-Gauss Lens nZ tMF%j'
12.1 The Basic Six-Element Version &TgS$c5k
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens .wH`9aq;5@
12.3 The Seven-Element Biotar - Split-Rear Singlet 6&8uLM(z
12.4 The Seven-Element Biotar - Broken Contact Front Doublet D*T*of G
12.5 The Seven-Element Biotar - One Compounded Outer Element 3?%?J^/a
12.6 The Eight-Element Biotar >z #^JR\6
12.7 A “Doubled Double-Gauss” Relay /RG>n
oz.#+t%X$b
13 Telephoto Lenses 7uUo
DM
13.1 The Basic Telephoto MUQj7.rNa
13.2 Close-up or Macro Lenses {[I]pm~n
13.3 Telephoto Designs >O;V[H2[
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch LyR bD$m
QUQw/
)~X.x"}8k
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses `;~A
14.1 The Reverse Telephoto Principle Jn :h;|9w
14.2 The Basic Retrofocus Lens ?Yf0h_>
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses e=ITAH3b
|Eyn0\OA
15 Wide Angle Lenses with Negative Outer Lenses cFD3
M)qb6aD0
16 The Petzval Lens; Head-up Display Lenses pie8 3Wy>
16.1 The Petzval Portrait Lens o;kxu(>yL'
16.2 The Petzval Projection Lens e 48N[p
16.3 The Petzval with a Field Flattener [_BQ%7DU
16.4 Very Height Speed Petzval Lenses ?zk#}Ex1
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems =&K8~
urbSprdF
17 Microscope Objectives 7:C_{\(
17.1 General Considerations dug^o c1
17.2 Classic Objective Design Forms; The Aplanatic Front /:Q
17.3 Flat-Field Objectives +0l-zd\
17.4 Reflecting Objectives Q8H+=L:
17.5 The Microscope Objective Designs ljP<WD
fxQ4kiI
18 Mirror and Catadioptric Systems VbI$#;:[7
18.1 The Good and Bad Points of Mirrors [4 v1
N
18.2 The Classic Two-Mirror Systems iSP}kM}
18.3 Catadioptric Systems :<P3fW
18.4 Aspheric Correctors and Schmidt Systems 1w!O&kn
18.5 Confocal Paraboloids C~-.zQ$
18.6 Unobscured Systems $Ph#pM(
18.7 Design of a Schmidt-Cassegrain “from Scratch” PjG^L
FX
Y"U t
19 Infrared and Ultraviolet Systems V(5*Dn84
19.1 Infrared Optics -=WQed}
19.2 IR Objective Lenses BUs={"Pa
19.3 IR Telescope <kCOg8<y
:
19.4 Laser Beam Expanders OLZs}N+ ;]
19,5 Ultraviolet Systems ZLZh$eZZ
19.6 Microlithographic Lenses ;XIDu6
q o6~)Aws
20 Zoom Lenses (O$il
20.1 Zoom Lenses {ePtZyo0
20.2 Zoom Lenses for Point and Shoot Cameras o-
v#Zl
20.3 A 20X Video Zoom Lens 5wa'SexqE
20.4 A Zoom Scanner Lens '
~1/*F%8
20.5 A Possible Zoom Lens Design Procedure 0N87G}Xu
_)S['[
21 Projection TV Lenses and Macro Lenses ^WkqRs
21.1 Projection TV Lenses tc0(G~.N
21.2 Macro Lenses F};T<#
9$#@Oe8*
22 Scanner/ , Laser Disk and Collimator Lenses o1Krp '*
22.1 Monochromatic Systems JT! Cb$!
22.2 Scanner Lenses Ye| (5f
22.3 Laser Disk, Focusing, and Collimator Lenses VkkC;/BBW
tR\cS)
23 Tolerance Budgeting <{T5}"e
23.1 The Tolerance Budget 4:=VHd
23.2 Additive Tolerances %Jji<M]
23.3 Establishing the Tolerance Budget x=03WQ8
D<gd)
24 Formulary 9H/C(Vo
24.1 Sign Conventions, Symbols, and Definitions .lAPlJOO
24.2 The Cardinal Points 2f0mr?l)N
24.3 Image Equations 7~~suQ{F4
24.4 Paraxial Ray Tracing (Surface by Surface) cGyR_8:2cv
24.5 Invariants ;$67GK
24.6 Paraxial Ray Tracing (Component by Component) *P/DDRq(2
24.7 Two-Componenet Relationships +G6 Ge;
24.8 Third-Order Aberrations – Surface Contributions lA`qB1x
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs ?_B'#,tI
24.10 Stop Shift Equations ^-Rqlr,F;
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces o)GesgxFa5
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) C/4r3A/u
h[;DRD!Z
~3Za"q*0s
Glossary bcUSjG>
Reference jwg*\HO,s
Index