"Modern Lens Design" 2nd Edition by Warren J. Smith z:N?T0b(
vXZP>
Contents of Modern Lens Design 2nd Edition QpiDBJCL
Sj:c {jyJd
1 Introduction t0Lt+E|J
1.1 Lens Design Books Ki1 zi~
1.2 Reference Material *>!-t
1.3 Specifications 1d842pt
1.4 Lens Design <Fv7JPN%
1.5 Lens Design Program Features Z"KrirZ
1.6 About This Book -;;m/QM
_{
2`sL)
2 Automatic Lens Design )Jw$&%/{1
2.2 The Merit Function 6;@:/kl t
2.3 Local Minima Bs|#7mA[
2.4 The Landscape Lens fh66Gn,
2.5 Types of Merit Function .Wi%V"
2.6 Stagnation uKTYb#E7
2.7 Generalized Simulated Annealing 6ZwQ/~7H
2.8 Considerations about Variables for Optimization t8; nP[`
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 82V;J 8T?
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ILiOEwHS7F
2.11 Spectral Weighting -<AGCiLz
2.12 How to Get Started "HwlN_PA
KU Mk:5
c
3 Improving a Design XF>!~D
3.1 Lens Design Tip Sheet: Standard Improvement Techniques wzmQRn;s
3.2 Glass Changes ( Index and V Values ) 7Bd=K=3u
3.3 Splitting Elements ?%lfbZ
3.4 Separating a Cemented Doublet GuaF B[4
3.5 Compounding an Element IFZw54
3.6 Vignetting and Its Uses ~ 588md :
3.7 Eliminating a Weak Element; the Concentric Problem mVN\
3.8 Balancing Aberrations (]VY==t~
3.9 The Symmetrical Principle G)f!AuN=
3.10 Aspheric Surfaces 5 /T#>l<
biForT_no
4 Evaluation: How Good is This Design knfmJUT
4.1 The Uses of a Preliminary Evaluation E70o nR!i
4.2 OPD versus Measures of Performance _ /Eg_dQ~@
4.3 Geometric Blur Spot Size versus Certain Aberrations gKmF#Z"\
4.4 Interpreting MTF - The Modulation Transfer Function h0A%KL
4.5 Fabrication Considerations )nq(XM7
>wFn|7\)s>
5 Lens Design Data -i_XP]b&
5.1 About the Sample Lens Designs kw7E<aF!
5.2 Lens Prescriptions, Drawings, and Aberration Plots )>iPx.hVSS
5.3 Estimating the Potential of a Redesign 16nU`TN
5.4 Scaling a Desing, Its Aberrations, and Its MTF ;!7M<T$&
5.5 Notes on the Interpretation of Ray Intercept Plots ~BE=z:
5.6 Various Evaluation Plot O%aHQL%Sz
: w>R|]
6 Telescope Objective RSw;b.t7
6.1 The Thin Airspaced Doublet sXT8jLIf
6.2 Merit Function for a Telescope Objective *o!#5c
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 5zyd;y)|'
6.4 Spherochromatism 8wEJyAu2
6.5 Zonal Spherical Aberration L$"pk{'
6.6 Induced Aberrations B5R 7geC
6.7 Three-Element Objectives ^&c &5S}
6.8 Secondary Spectrum (Apochromatic Systems)
ttt4h
6.9 The Design of an f/7 Apochromatic Triplet P?jI:'u!R.
6.10 The Diffractive Surface in Lens Design "`4M4`'
6.11 A Final Note fEtBodA)
JL<<EPC
7 Eyepieces and Magnifiers *iyc,f^w
7.1 Eyepieces -q
nOq[
7.2 A Pair of Magnifier Designs 'z=d&K
7.3 The Simple, Classical Eyepieces E}#&2n8Y
7.4 Design Story of an Eyepiece for a 6*30 Binocular ZsYY)<n
7.5 Four-Element Eyepieces =.):tGDp
7.6 Five-Element Eyepieces %WX^']p
7.7 Very High Index Eyepiece/Magnifier o,?h}@
7.8 Six- and Seven-Element Eyepieces }D3hP|.X
5Q8s{WQ
8 Cooke Triplet Anastigmats RX^Xtc"
8.1 Airspaced Triplet Anastigmats wS
>S\,LV
8.2 Glass Choice r]aI=w<(f
8.3 Vertex Length and Residual Aberrations *_HF %JYMZ
8.4 Other Design Considerations PeLzZ'$D
8.5 A Plastic, Aspheric Triplet Camera Lens t\v~ A0
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet C0>L<*C
8.7 Possible Improvement to Our “Basic” Triplet Bo'v!bI7
8.7 The Rear Earth (Lanthanum) Glasses ~0}d=d5g
8.9 Aspherizing the Surfaces TZ}y%iU:mB
8.10 Increasing the Element Thickness EN8xn9M?
#>sIXY
9 Split Triplets i.KRw6
_kBx2>qQ
10 The Tessar, Heliar, and Other Compounded Triplets ov
>5+"q)
10.1 The Classic Tessar )@=fGN Dt
10.2 The Heliar/Pentac /*GCuc|
10.3 The Portrait Lens and the Enlarger Lens [F{P0({%?
10.4 Other Compounded Triplets Wdga(8t
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar O3#eQs
F%O+w;J4
11 Double-Meniscus Anastigmats kQn}lD
11.1 Meniscus Components 9oG)\M.6w
11.2 The Hypergon, Totogon, and Metrogon %J9+`uSl
11.3 A Two Element Aspheric Thick Meniscus Camera Lens "3_GFq
11.4 Protar, Dagor, and Convertible Lenses #)iPvV'
11.5 The Split Dagor ,pVe@ d'
11.6 The Dogmar CW.T`F
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens NK:! U
fP$rOJ)P
12 The Biotar or Double-Gauss Lens d'b9.ki\
12.1 The Basic Six-Element Version .SNg2.
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens A5_r(Z-5
12.3 The Seven-Element Biotar - Split-Rear Singlet }_7
12.4 The Seven-Element Biotar - Broken Contact Front Doublet vkeZ!klYB
12.5 The Seven-Element Biotar - One Compounded Outer Element "M^mJl&*b
12.6 The Eight-Element Biotar ,3!4
D^
12.7 A “Doubled Double-Gauss” Relay (Ap?ixrR_
<\P
`<
13 Telephoto Lenses %'S[f
13.1 The Basic Telephoto /a6i`
13.2 Close-up or Macro Lenses SzfMQ@~
13.3 Telephoto Designs d"Zyc(Jk
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ?0qP6'nWx
.8;0O
M
cIrc@
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses dfZ`M^NU
14.1 The Reverse Telephoto Principle 7 y$a=+D i
14.2 The Basic Retrofocus Lens U~M!T#\s
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses tZu1jBO_Q4
`}rk1rl6
15 Wide Angle Lenses with Negative Outer Lenses n9-WZsc1
$ ?|;w,%I
16 The Petzval Lens; Head-up Display Lenses ,ne3uPRu7~
16.1 The Petzval Portrait Lens uf"(b"N0
16.2 The Petzval Projection Lens KleiX7
16.3 The Petzval with a Field Flattener QbY@{"" `
16.4 Very Height Speed Petzval Lenses 8Dn~U:F/?
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems eo.B0NZsF
wyXQP+9G
17 Microscope Objectives P4+PY 8
17.1 General Considerations Sl@Ucc31
17.2 Classic Objective Design Forms; The Aplanatic Front Lu5X~6j"$
17.3 Flat-Field Objectives M5L /3qLh1
17.4 Reflecting Objectives ^`Hb7A(
17.5 The Microscope Objective Designs Aq\K N.
MIb[}w=
18 Mirror and Catadioptric Systems | IS$Om
18.1 The Good and Bad Points of Mirrors q;7DH4;t
18.2 The Classic Two-Mirror Systems _KkP{g,Y
18.3 Catadioptric Systems )ybF@emc
18.4 Aspheric Correctors and Schmidt Systems i6g=fx6j*
18.5 Confocal Paraboloids S0}=uL#dt
18.6 Unobscured Systems %E"Z &_3{
18.7 Design of a Schmidt-Cassegrain “from Scratch” yT~x7,
:\y' ?d- Q
19 Infrared and Ultraviolet Systems s'$2 }K
19.1 Infrared Optics %.onO0})
19.2 IR Objective Lenses DgY
!)cS
19.3 IR Telescope V)vik
19.4 Laser Beam Expanders 14 (sp
19,5 Ultraviolet Systems fPPmUM^C9
19.6 Microlithographic Lenses $g/h=w@
sV\K[4HG
20 Zoom Lenses |68k9rq
20.1 Zoom Lenses <XN=v!2;
20.2 Zoom Lenses for Point and Shoot Cameras FYK`.>L28
20.3 A 20X Video Zoom Lens s[t<2)i
20.4 A Zoom Scanner Lens ml /S|`Drk
20.5 A Possible Zoom Lens Design Procedure nd7g8P9p
? Dn}
21 Projection TV Lenses and Macro Lenses 8_"NF%%(n
21.1 Projection TV Lenses +w"?q'SnF
21.2 Macro Lenses JYv<QsD
<Y2$'ETD
22 Scanner/ , Laser Disk and Collimator Lenses 8m=O408Q
22.1 Monochromatic Systems k+vfZ9bD(J
22.2 Scanner Lenses QHc([%oV
22.3 Laser Disk, Focusing, and Collimator Lenses {^1''
yc`*zLWh
23 Tolerance Budgeting KSHq0A6/q%
23.1 The Tolerance Budget )ax>*
23.2 Additive Tolerances euVj,m
23.3 Establishing the Tolerance Budget -Mz [S
iRbe$v&N
24 Formulary OA(.&5]
24.1 Sign Conventions, Symbols, and Definitions O?cU6u;W
24.2 The Cardinal Points N"suR}9%
24.3 Image Equations T[#q0bv
24.4 Paraxial Ray Tracing (Surface by Surface) -4zV
yW
S<
24.5 Invariants e<[ ] W4"A
24.6 Paraxial Ray Tracing (Component by Component) K[LuvS
24.7 Two-Componenet Relationships h9#)Eo
24.8 Third-Order Aberrations – Surface Contributions x0:BxRx*
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 8ZLHN',
24.10 Stop Shift Equations ${eV3LSC
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces !a-B=pn!]
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) @BF1X.4-+
Z#bO}!
qmt9J?$k
Glossary S(?A3 H
Reference -a &<Un/
Index