"Modern Lens Design" 2nd Edition by Warren J. Smith X;F?:Iw \
"P@>M) -9Z
Contents of Modern Lens Design 2nd Edition jeyLL<
|IoB?^_h
1 Introduction 4n1; Bh$
1.1 Lens Design Books + 1IQYa|
1.2 Reference Material I
V%VU
1.3 Specifications vKwQXR~C
1.4 Lens Design p Rdk>Ph
1.5 Lens Design Program Features ./j,Z$|
1.6 About This Book p,pR!qC>
*=ZsqOHwG
2 Automatic Lens Design Hd7,ZHj3^
2.2 The Merit Function (KZHX5T=
2.3 Local Minima /N>e&e[35\
2.4 The Landscape Lens I\?9+3 XnQ
2.5 Types of Merit Function \k`n[{
2.6 Stagnation BG^C9*ZuP
2.7 Generalized Simulated Annealing qa(>wR"mT
2.8 Considerations about Variables for Optimization CxhY$%C (L
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems :M{Y,~cP
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ^ 5VK>
2.11 Spectral Weighting q{2I_[p
2.12 How to Get Started %u^JpC{E
MC((M,3L
3 Improving a Design GT hL/M
3.1 Lens Design Tip Sheet: Standard Improvement Techniques uJR%0 E7!
3.2 Glass Changes ( Index and V Values ) Kz<@x`0
3.3 Splitting Elements X1[CX&Am
3.4 Separating a Cemented Doublet .I VlEG0
3.5 Compounding an Element ``,k5!a66\
3.6 Vignetting and Its Uses MF60-VE
3.7 Eliminating a Weak Element; the Concentric Problem z)XRx:YU;$
3.8 Balancing Aberrations Giq=*D+
3.9 The Symmetrical Principle DcIvhB p
3.10 Aspheric Surfaces {u!)y?}I-
1Kvx1p
4 Evaluation: How Good is This Design 8;y&Pb~)
4.1 The Uses of a Preliminary Evaluation &|%6|u9
4.2 OPD versus Measures of Performance RO0>I8c1c
4.3 Geometric Blur Spot Size versus Certain Aberrations mDGn:oRj
4.4 Interpreting MTF - The Modulation Transfer Function ~A<H9Bw
4.5 Fabrication Considerations V>64/
~'5
5 Lens Design Data ;Z j]~|
5.1 About the Sample Lens Designs S.B<pjgt
5.2 Lens Prescriptions, Drawings, and Aberration Plots Sp}D;7
5.3 Estimating the Potential of a Redesign 7f<EoSK
5.4 Scaling a Desing, Its Aberrations, and Its MTF q'oMAM f}
5.5 Notes on the Interpretation of Ray Intercept Plots gef6pfV
5.6 Various Evaluation Plot ?6c-7QV
ODc9r }
6 Telescope Objective sC00un%
6.1 The Thin Airspaced Doublet 2M)]!lYy
6.2 Merit Function for a Telescope Objective #U=X NU}k
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 9p 4"r^
6.4 Spherochromatism H4OhIxK
6.5 Zonal Spherical Aberration mD:IO
6.6 Induced Aberrations &2-L.Xb
6.7 Three-Element Objectives <?D[9Mk$
6.8 Secondary Spectrum (Apochromatic Systems) Q "oI])r
6.9 The Design of an f/7 Apochromatic Triplet ^ yh'lh/
6.10 The Diffractive Surface in Lens Design o!Ev;'D
6.11 A Final Note H7+Xs%
{Z; jhR,
7 Eyepieces and Magnifiers ^1:U'jIXO
7.1 Eyepieces 6b8;}],|
7.2 A Pair of Magnifier Designs %or,{mmiM:
7.3 The Simple, Classical Eyepieces H?}[r)|(3i
7.4 Design Story of an Eyepiece for a 6*30 Binocular 2=-utN@Z
7.5 Four-Element Eyepieces =k3!RW'
7.6 Five-Element Eyepieces o01kYBD
7.7 Very High Index Eyepiece/Magnifier SUWD]k >PH
7.8 Six- and Seven-Element Eyepieces J" j.'.
WqxUX H
8 Cooke Triplet Anastigmats gIR^)m
8.1 Airspaced Triplet Anastigmats %xwIt~Y
8.2 Glass Choice ?^'
7+8C*J
8.3 Vertex Length and Residual Aberrations l5Y/Ok0,
8.4 Other Design Considerations =k}SD96
8.5 A Plastic, Aspheric Triplet Camera Lens !>x|7
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet DPrBFmHF
8.7 Possible Improvement to Our “Basic” Triplet Q|}aR:4
8.7 The Rear Earth (Lanthanum) Glasses gADmN8G=
8.9 Aspherizing the Surfaces H@X oqgI
8.10 Increasing the Element Thickness U(&oj e
N-lGa@ j
9 Split Triplets ?6Cz[5\
Z'pQ^MO
10 The Tessar, Heliar, and Other Compounded Triplets -B#yy]8
10.1 The Classic Tessar %zC[KE*~
10.2 The Heliar/Pentac nmlPX7!{$
10.3 The Portrait Lens and the Enlarger Lens ZaFb*XRgS
10.4 Other Compounded Triplets STfyCtS
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar R cY>k
;;5Uwd'-
11 Double-Meniscus Anastigmats JXiZB
8}
11.1 Meniscus Components aYL|@R5;e
11.2 The Hypergon, Totogon, and Metrogon Fhq9D{TeY,
11.3 A Two Element Aspheric Thick Meniscus Camera Lens {vaaFs
11.4 Protar, Dagor, and Convertible Lenses R8*Q$rH<
11.5 The Split Dagor OYM@szM
11.6 The Dogmar +c:3o*
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens z!=P@b
Y**|N8e
12 The Biotar or Double-Gauss Lens "%WgT2)m.
12.1 The Basic Six-Element Version W-RqN!snJ8
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens v/uO&iQw5
12.3 The Seven-Element Biotar - Split-Rear Singlet (-7ZI"Ku
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ]u-SL md
12.5 The Seven-Element Biotar - One Compounded Outer Element F0~k1TDw
12.6 The Eight-Element Biotar vv6$>SU
12.7 A “Doubled Double-Gauss” Relay RhF>T&Q
K*K1(_x=
13 Telephoto Lenses +]>+a<x*%
13.1 The Basic Telephoto ZZ/cq:3$ P
13.2 Close-up or Macro Lenses 8B!aO/Km
13.3 Telephoto Designs *, Ld/O;s
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ,O=a*%0rt
<j}lp-
N5|Rmfo1
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses CR4rDh8z a
14.1 The Reverse Telephoto Principle m!XI {F@x
14.2 The Basic Retrofocus Lens @
\.;b9
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses _\5~>g_
+5<k-0v
15 Wide Angle Lenses with Negative Outer Lenses >: 0tA{bV
Zr$d20M2A;
16 The Petzval Lens; Head-up Display Lenses 1Wg-x0R
16.1 The Petzval Portrait Lens [~5p>'
16.2 The Petzval Projection Lens KYJ1}5n
16.3 The Petzval with a Field Flattener b yg0.+e0
16.4 Very Height Speed Petzval Lenses {TSY|D2
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems k>4qkigjc
X CB?ll*^
17 Microscope Objectives *E>.)B i
17.1 General Considerations ofc.zwH
17.2 Classic Objective Design Forms; The Aplanatic Front U3;aLQ*
17.3 Flat-Field Objectives -P=g3Q i
17.4 Reflecting Objectives $X`y%*<<v
17.5 The Microscope Objective Designs TmRxKrRs
Ftb%{[0}u3
18 Mirror and Catadioptric Systems wn+FTqj
18.1 The Good and Bad Points of Mirrors yT OyDm-
18.2 The Classic Two-Mirror Systems 4FeEGySow
18.3 Catadioptric Systems >hMUr*j
18.4 Aspheric Correctors and Schmidt Systems !&kL9A).
18.5 Confocal Paraboloids 2H#N{>7
18.6 Unobscured Systems l1_X(Z._V
18.7 Design of a Schmidt-Cassegrain “from Scratch” \L!uHAE2a
`%K`gYhG1
19 Infrared and Ultraviolet Systems ux2013C_
19.1 Infrared Optics 0V,Nv9!S
19.2 IR Objective Lenses khd5 Cf[
19.3 IR Telescope Z%o7f6P0IX
19.4 Laser Beam Expanders 4k}e28
19,5 Ultraviolet Systems H!r &aP
19.6 Microlithographic Lenses .,2V5D-${
uPyVF-i
20 Zoom Lenses E+_&HG}a
20.1 Zoom Lenses =y ]Jl,_.
20.2 Zoom Lenses for Point and Shoot Cameras my^ak*N
20.3 A 20X Video Zoom Lens ( `' 8Ww
20.4 A Zoom Scanner Lens JXQPT
20.5 A Possible Zoom Lens Design Procedure )-P!Ae_.v
Bl.u=I:Y4
21 Projection TV Lenses and Macro Lenses U)jUq_LX
21.1 Projection TV Lenses *3{J#Q6fk3
21.2 Macro Lenses +`en{$%%
0Vv9BL{
22 Scanner/ , Laser Disk and Collimator Lenses ~2}Pl)
22.1 Monochromatic Systems N$aZ== $5
22.2 Scanner Lenses R|,7d:k
22.3 Laser Disk, Focusing, and Collimator Lenses $`Nd?\$
6k0^ x Q
23 Tolerance Budgeting r((Tavn
23.1 The Tolerance Budget 0A$SYF$O+[
23.2 Additive Tolerances B+VuUt{S
23.3 Establishing the Tolerance Budget "X1vZwK8N
SBKeb|H8
24 Formulary ?qHF}k|
24.1 Sign Conventions, Symbols, and Definitions 97~K!'/^+y
24.2 The Cardinal Points E:A!wS`"
24.3 Image Equations cf8-]G?tK
24.4 Paraxial Ray Tracing (Surface by Surface) s3t!<9[m
24.5 Invariants Ueyw;Y
24.6 Paraxial Ray Tracing (Component by Component) =V $j6
24.7 Two-Componenet Relationships <+E%E4
24.8 Third-Order Aberrations – Surface Contributions )q^ Bj$
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 9BON.` |_
24.10 Stop Shift Equations /)#8)"`nT
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces is#8R:7.:
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) xxX/y2\
x'`"iZO.t
r2eQ{u{nX
Glossary a8uYs DS
Reference Bku'H
Index