"Modern Lens Design" 2nd Edition by Warren J. Smith gCM(h[7A
Gy!bPVe
Contents of Modern Lens Design 2nd Edition 8)="Ee
J:0`*7
1 Introduction c@{M),C~E
1.1 Lens Design Books c4M]q4]F
1.2 Reference Material vzZ"TSP
1.3 Specifications tF!-}{c"k
1.4 Lens Design v+
"9&
1.5 Lens Design Program Features |?ma?
1.6 About This Book 6QNO#!;
kV$VKag*A
2 Automatic Lens Design ^o Q^/v~
2.2 The Merit Function (ljoD[kZ
2.3 Local Minima TlJ'pG 4^
2.4 The Landscape Lens )gNVJ
2.5 Types of Merit Function e.]k4K
2.6 Stagnation H~?p,h
2.7 Generalized Simulated Annealing 92M_Z1_w[
2.8 Considerations about Variables for Optimization 7
'{wl,u
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems xi=Qxgx0I
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits >RXDuCVi
2.11 Spectral Weighting 8:jakOeT
2.12 How to Get Started Zmy:Etqi
,pa=OF
3 Improving a Design XVYj
X
3.1 Lens Design Tip Sheet: Standard Improvement Techniques e# KP3Lp
3.2 Glass Changes ( Index and V Values ) sF1j4 NC
3.3 Splitting Elements VevDW }4q*
3.4 Separating a Cemented Doublet Pi=B\=gs
3.5 Compounding an Element Z)G@ahOQ
3.6 Vignetting and Its Uses =5#sB*
3.7 Eliminating a Weak Element; the Concentric Problem &Tk@2<5=
3.8 Balancing Aberrations EN)0b,ax
3.9 The Symmetrical Principle xd^9R<
3.10 Aspheric Surfaces pt~b=+bBm
~s>Ud<l%r
4 Evaluation: How Good is This Design 3=IY0Q>/(
4.1 The Uses of a Preliminary Evaluation g
I4Rku
4.2 OPD versus Measures of Performance `<*
tp@
4.3 Geometric Blur Spot Size versus Certain Aberrations pxHJX2
4.4 Interpreting MTF - The Modulation Transfer Function vp`s< ;CA
4.5 Fabrication Considerations I|)U>bV
^q/_D%]C
5 Lens Design Data A(wuRXnVWK
5.1 About the Sample Lens Designs F^X:5g~K
5.2 Lens Prescriptions, Drawings, and Aberration Plots )%~<EJ*&Z
5.3 Estimating the Potential of a Redesign -Ps kUl'
5.4 Scaling a Desing, Its Aberrations, and Its MTF -h{| u{t
5.5 Notes on the Interpretation of Ray Intercept Plots jU=n\o=?
5.6 Various Evaluation Plot fk(h*L|sI
B-[qS;PY%
6 Telescope Objective h3P ^W(=&
6.1 The Thin Airspaced Doublet
i>z {QE
6.2 Merit Function for a Telescope Objective p$l'y""i
6.3 The Design of an f/7 Cemented Doublet Telescope Objective ^-26K|{3
6.4 Spherochromatism tQcn%CK
6.5 Zonal Spherical Aberration X>ck.}F
6.6 Induced Aberrations ]McDN[h:
6.7 Three-Element Objectives 6|]e}I@<2
6.8 Secondary Spectrum (Apochromatic Systems) Ogp@!
6.9 The Design of an f/7 Apochromatic Triplet p/'09FY+ U
6.10 The Diffractive Surface in Lens Design p=]z`t
6.11 A Final Note 4i(?5p>f
y/!jC]!+c
7 Eyepieces and Magnifiers j~k+d$a
7.1 Eyepieces |]j2T8_=
7.2 A Pair of Magnifier Designs OsNJ;B
7.3 The Simple, Classical Eyepieces U t.#h="
7.4 Design Story of an Eyepiece for a 6*30 Binocular *[b22a4H(
7.5 Four-Element Eyepieces ^_JByBD
7.6 Five-Element Eyepieces nx@h
7.7 Very High Index Eyepiece/Magnifier )cYbE1=u8>
7.8 Six- and Seven-Element Eyepieces /%i: (Ny
yPVK>em5
8 Cooke Triplet Anastigmats 9Vtn62+
8.1 Airspaced Triplet Anastigmats mI-9=6T_
8.2 Glass Choice & _mp!&5XV
8.3 Vertex Length and Residual Aberrations kr>F=|R]
8.4 Other Design Considerations </9@RO
8.5 A Plastic, Aspheric Triplet Camera Lens 4'`y5E
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet z*G(AcS)
8.7 Possible Improvement to Our “Basic” Triplet e\'=#Hw
8.7 The Rear Earth (Lanthanum) Glasses ZoroK.N4A%
8.9 Aspherizing the Surfaces ~?uch8H
8.10 Increasing the Element Thickness _vr;cjMI
7r wNjY#
9 Split Triplets NLF6O9
Qs;MEt 1
10 The Tessar, Heliar, and Other Compounded Triplets ]TIBy "3
10.1 The Classic Tessar T/TMi&:?.
10.2 The Heliar/Pentac FP9FE `x
10.3 The Portrait Lens and the Enlarger Lens XcM.<Dn3
10.4 Other Compounded Triplets ::2(pgH
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar >PONu]^
Y@Ti2bI`v
11 Double-Meniscus Anastigmats C,nU.0
11.1 Meniscus Components n+:}pD
11.2 The Hypergon, Totogon, and Metrogon *#Hw6N0#
11.3 A Two Element Aspheric Thick Meniscus Camera Lens |ZJ<N\\h-
11.4 Protar, Dagor, and Convertible Lenses 8 ;o*c6+
11.5 The Split Dagor [?nM)4d
11.6 The Dogmar =SLCG.
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens :V^|}C#
kyu
PN<?
12 The Biotar or Double-Gauss Lens nv_9Llh=z
12.1 The Basic Six-Element Version ]c\d][R N
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens @"'$e_jj"
12.3 The Seven-Element Biotar - Split-Rear Singlet DE" Y(;S
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ]]8^j='P'
12.5 The Seven-Element Biotar - One Compounded Outer Element 2~RG\JWTA
12.6 The Eight-Element Biotar sH /08Z
12.7 A “Doubled Double-Gauss” Relay iBaz1pDc
QV9z81[
13 Telephoto Lenses _Sn45h@"
13.1 The Basic Telephoto _ 68{
{.
13.2 Close-up or Macro Lenses p5JRG2zt
13.3 Telephoto Designs E% d3}@
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch GLr7sack
T7~Vk2o%(
D);w)`
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses m+9~f_}
14.1 The Reverse Telephoto Principle C7xmk;c
w
14.2 The Basic Retrofocus Lens #D|n6[Y'.t
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses i4H,Ggb
:C9vs
15 Wide Angle Lenses with Negative Outer Lenses $&jte_hv
vnD `+y
16 The Petzval Lens; Head-up Display Lenses ~9DD=5\
16.1 The Petzval Portrait Lens p-JGDjR0G
16.2 The Petzval Projection Lens nV3I6
16.3 The Petzval with a Field Flattener >S'IrnH'!
16.4 Very Height Speed Petzval Lenses 9q_c`
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems j6DI$tV~
5Sz}gP('
17 Microscope Objectives =U,mzY(
17.1 General Considerations v]X*(e
17.2 Classic Objective Design Forms; The Aplanatic Front ]1&}L^a
17.3 Flat-Field Objectives #gSLFM{p
17.4 Reflecting Objectives vk.P| Y-;
17.5 The Microscope Objective Designs #8@o%%Fd
y{Vh?Z<E
18 Mirror and Catadioptric Systems 'ocPG.PaU
18.1 The Good and Bad Points of Mirrors d34BJ<
18.2 The Classic Two-Mirror Systems tzrvIVD
18.3 Catadioptric Systems ]oxi~TwY^
18.4 Aspheric Correctors and Schmidt Systems xA SH-9
18.5 Confocal Paraboloids &AP`k
18.6 Unobscured Systems MZ"|Jn
18.7 Design of a Schmidt-Cassegrain “from Scratch” ,v_NrX=f?
Aqo90(jffx
19 Infrared and Ultraviolet Systems
e"&QQ-q
19.1 Infrared Optics E_T!|Q.
19.2 IR Objective Lenses
IA680^
19.3 IR Telescope i6 )HC
19.4 Laser Beam Expanders _(F8}s
19,5 Ultraviolet Systems 4}F~h
19.6 Microlithographic Lenses 2(H-q(
LsO}a;t5
20 Zoom Lenses xq<X:\O
20.1 Zoom Lenses s"B2Whe
20.2 Zoom Lenses for Point and Shoot Cameras DIF-%X5
20.3 A 20X Video Zoom Lens D";@)\jN
20.4 A Zoom Scanner Lens &gsBbQ+qA
20.5 A Possible Zoom Lens Design Procedure p((a(Q/
fi [4F
21 Projection TV Lenses and Macro Lenses y3OF+;E
21.1 Projection TV Lenses ^MO})C
21.2 Macro Lenses $rm/{i_7
P7\?WN$p
22 Scanner/ , Laser Disk and Collimator Lenses t ^~Qv
22.1 Monochromatic Systems VG|FjD
22.2 Scanner Lenses ;@xlrj+
22.3 Laser Disk, Focusing, and Collimator Lenses IPf>9#L
Ui.S)\B
23 Tolerance Budgeting (9Q@I8}Iy
23.1 The Tolerance Budget "/Pq/\,R|
23.2 Additive Tolerances GQ2/3kt
23.3 Establishing the Tolerance Budget Z}S7%m
Z): Nd9
24 Formulary 9qUkw&}H
24.1 Sign Conventions, Symbols, and Definitions ZlP+t>
24.2 The Cardinal Points EYA=fU
24.3 Image Equations -ARks_\
24.4 Paraxial Ray Tracing (Surface by Surface) $4q$!jB5
24.5 Invariants p0hE`!
24.6 Paraxial Ray Tracing (Component by Component) sO{TGk]*
24.7 Two-Componenet Relationships }:57Ym)7w
24.8 Third-Order Aberrations – Surface Contributions )3k?{1:
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs es<8"CcP
24.10 Stop Shift Equations MUSsanCA
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces bvS6xU-
J
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) \,pObWm
}$i/4?dYsQ
O L 9(~p
Glossary _!,Ees=b
Reference */2nh%>$
Index