"Modern Lens Design" 2nd Edition by Warren J. Smith s.^c..e75C
%<aImR]
Contents of Modern Lens Design 2nd Edition 6oj4Rg+(
W
*YW6
1 Introduction 5R,la\!bQ
1.1 Lens Design Books f\h%; X
1.2 Reference Material A#Xj]^-*
1.3 Specifications oy2(A g\
1.4 Lens Design T$H2'tK|
1.5 Lens Design Program Features ')C|`(hs
1.6 About This Book T?H\&2CLT
n&_YYEHx
2 Automatic Lens Design } c{Fa&
2.2 The Merit Function `0yb?Nk `:
2.3 Local Minima %S{o5txo
2.4 The Landscape Lens sL)Rg(rkx
2.5 Types of Merit Function ^pJ0nY#c
2.6 Stagnation xe(MHNrj
2.7 Generalized Simulated Annealing ob0~VEH-
2.8 Considerations about Variables for Optimization HS{P?~:=U
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems &nQRa?3,
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 54=}GnZN
2.11 Spectral Weighting azvDvEWCQZ
2.12 How to Get Started yrO?Np
S&n[4*
3 Improving a Design m+Y@UgB
3.1 Lens Design Tip Sheet: Standard Improvement Techniques PPN q:,
3.2 Glass Changes ( Index and V Values ) G-2EQ.
3.3 Splitting Elements [FB&4>V/
3.4 Separating a Cemented Doublet GSQfg
3.5 Compounding an Element }g}6qCv7
3.6 Vignetting and Its Uses Am#m>^!qb
3.7 Eliminating a Weak Element; the Concentric Problem 9#u }^t
3.8 Balancing Aberrations -dg} BM
3.9 The Symmetrical Principle GUKDhg,W
3.10 Aspheric Surfaces SLSF
<$
5QR}IxQ
4 Evaluation: How Good is This Design ?hKm&B;d
4.1 The Uses of a Preliminary Evaluation
+q7qK*
4.2 OPD versus Measures of Performance iNt 4>
4.3 Geometric Blur Spot Size versus Certain Aberrations ;JYoW{2
4.4 Interpreting MTF - The Modulation Transfer Function pNuqT*
4.5 Fabrication Considerations Wt(Kd5k0'2
/;DjJpwf0
5 Lens Design Data ^ b@!dS
5.1 About the Sample Lens Designs }gCG&7C
5.2 Lens Prescriptions, Drawings, and Aberration Plots PDhWFF
5.3 Estimating the Potential of a Redesign 658\#x8|
5.4 Scaling a Desing, Its Aberrations, and Its MTF )+?HI^-[S
5.5 Notes on the Interpretation of Ray Intercept Plots \F[n`C"Is
5.6 Various Evaluation Plot THJ
3-Ug
5|CzX X#U
6 Telescope Objective INOH{`}Ew
6.1 The Thin Airspaced Doublet fO#?k<p
6.2 Merit Function for a Telescope Objective NJ<N %hcjK
6.3 The Design of an f/7 Cemented Doublet Telescope Objective (e(Rr4
6.4 Spherochromatism RXM}hqeG
6.5 Zonal Spherical Aberration \OP9_J(*
6.6 Induced Aberrations uw_H:-J
6.7 Three-Element Objectives !Pw$48cg
6.8 Secondary Spectrum (Apochromatic Systems) ]s_@n!
6.9 The Design of an f/7 Apochromatic Triplet vuZf#\zh}
6.10 The Diffractive Surface in Lens Design )PwQ^||{
6.11 A Final Note 4x(F&0
> <X $#
7 Eyepieces and Magnifiers YN/u9[=`
7.1 Eyepieces )Xp Vu
7.2 A Pair of Magnifier Designs ( :iPm<
7.3 The Simple, Classical Eyepieces %w$mSG
7.4 Design Story of an Eyepiece for a 6*30 Binocular KhrFg1|
7.5 Four-Element Eyepieces |<1M&\oaQ'
7.6 Five-Element Eyepieces e^=NL>V6p
7.7 Very High Index Eyepiece/Magnifier X CzXS.
7.8 Six- and Seven-Element Eyepieces bGu([VB
!f`5B( @
8 Cooke Triplet Anastigmats w?_`/oqd|
8.1 Airspaced Triplet Anastigmats };^}2Xo+
8.2 Glass Choice W]zwghxH
8.3 Vertex Length and Residual Aberrations )L >Q;'
8.4 Other Design Considerations vnL?O8`c
8.5 A Plastic, Aspheric Triplet Camera Lens D!S8oKW
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet {a.
<`
8.7 Possible Improvement to Our “Basic” Triplet Si]X
rub
8.7 The Rear Earth (Lanthanum) Glasses bH,M,xIL2
8.9 Aspherizing the Surfaces 6(>WGR
8.10 Increasing the Element Thickness QypZH"Np
|WBZN1W)
9 Split Triplets >%l:Dw\A:
xdqK.Z%
10 The Tessar, Heliar, and Other Compounded Triplets oK$'9c5<
10.1 The Classic Tessar RbKwO}
z$q
10.2 The Heliar/Pentac Sj@15 W
10.3 The Portrait Lens and the Enlarger Lens 12 -EDg/1
10.4 Other Compounded Triplets @gEr+O1K(
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ~pRs-
.'&V#D0
11 Double-Meniscus Anastigmats AJdp6@O+
11.1 Meniscus Components }1Z6e[K?
11.2 The Hypergon, Totogon, and Metrogon PV(4$I}
11.3 A Two Element Aspheric Thick Meniscus Camera Lens k/@Tr
:
11.4 Protar, Dagor, and Convertible Lenses h"r!q[MNo
11.5 The Split Dagor (Igu:=
11.6 The Dogmar z>p]/Sa
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens \f<z*!,D$
cl_TF[n?
12 The Biotar or Double-Gauss Lens >4M<W4
12.1 The Basic Six-Element Version _Z$?^gn
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens NN mM#eB:4
12.3 The Seven-Element Biotar - Split-Rear Singlet
l|7O)
12.4 The Seven-Element Biotar - Broken Contact Front Doublet 14-]esSa
12.5 The Seven-Element Biotar - One Compounded Outer Element <S&]$?`{Wi
12.6 The Eight-Element Biotar a5 bPEJ=I
12.7 A “Doubled Double-Gauss” Relay 'B,KFA<
J)KnE2dw5
13 Telephoto Lenses xj7vI&u.
13.1 The Basic Telephoto #N$9u"8C
13.2 Close-up or Macro Lenses H nd+l)ng
13.3 Telephoto Designs 9(Jy0]E~
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch =9<$eLE0
)(]Envb?A0
tpZ->)1
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses "[.ne)/MC
14.1 The Reverse Telephoto Principle Sz)b7:
14.2 The Basic Retrofocus Lens c$A@T~$
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses bJ6p,]g
tpGCrn2w>
15 Wide Angle Lenses with Negative Outer Lenses TL@mM
OJ>iq@>
16 The Petzval Lens; Head-up Display Lenses <]'|$8&jY
16.1 The Petzval Portrait Lens MyFCJJ/
16.2 The Petzval Projection Lens ^vM_kArA
16.3 The Petzval with a Field Flattener z37Z%^
16.4 Very Height Speed Petzval Lenses &(7$&Q
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems p#=;)1
^cn@?k((A
17 Microscope Objectives a'A s
17.1 General Considerations (l_:XG)7~b
17.2 Classic Objective Design Forms; The Aplanatic Front 8i[LR#D)
17.3 Flat-Field Objectives _#vGs:-x&
17.4 Reflecting Objectives 1$(
17.5 The Microscope Objective Designs -N4z-ozhC
G
B&:G V
18 Mirror and Catadioptric Systems +A\V )
18.1 The Good and Bad Points of Mirrors N<n8'XDdG
18.2 The Classic Two-Mirror Systems ZB0+GG\
18.3 Catadioptric Systems b5S7{"<V
18.4 Aspheric Correctors and Schmidt Systems y!5:dvt
18.5 Confocal Paraboloids _D
JCsK|
18.6 Unobscured Systems 'kEG.Oq7
18.7 Design of a Schmidt-Cassegrain “from Scratch” uY]T:UVk
ckWkZ
78\
19 Infrared and Ultraviolet Systems Y/D-V
19.1 Infrared Optics 7_%2xewV|
19.2 IR Objective Lenses s`1^*Dl%+
19.3 IR Telescope U{HML|
19.4 Laser Beam Expanders n.ct]+L
19,5 Ultraviolet Systems Fs)
19.6 Microlithographic Lenses snq;:n!
:q;R6-|.
20 Zoom Lenses Gk 6fO
20.1 Zoom Lenses > Y]_K
20.2 Zoom Lenses for Point and Shoot Cameras PkO!'X
20.3 A 20X Video Zoom Lens ^Et,TF\
20.4 A Zoom Scanner Lens +4HlRGH
20.5 A Possible Zoom Lens Design Procedure H:{?3gk.P3
^vW$XRnt
21 Projection TV Lenses and Macro Lenses N6q5`Ry
21.1 Projection TV Lenses ?S9Nm~vlt
21.2 Macro Lenses wHWma)}-z
~QCA -Yud
22 Scanner/ , Laser Disk and Collimator Lenses xU:4Y0y8
22.1 Monochromatic Systems wE4;Rk1
22.2 Scanner Lenses Z/c_kf[
22.3 Laser Disk, Focusing, and Collimator Lenses `V@z&n0P6
Wp`C:H
23 Tolerance Budgeting K( z[}
23.1 The Tolerance Budget 3fl7~Lw,
23.2 Additive Tolerances _aY.
23.3 Establishing the Tolerance Budget :G0+;[?N
{lMqcK
24 Formulary yf?W^{^|
24.1 Sign Conventions, Symbols, and Definitions DyIV/
24.2 The Cardinal Points .jaZ|nN8`
24.3 Image Equations + ~~ Z0.[
24.4 Paraxial Ray Tracing (Surface by Surface) ]zcV]Qj$~
24.5 Invariants cyBW0wV1
24.6 Paraxial Ray Tracing (Component by Component) }k| g%HJ
24.7 Two-Componenet Relationships L^)qe^%3
24.8 Third-Order Aberrations – Surface Contributions s6/cL|Ex
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs )vQNiik#
24.10 Stop Shift Equations 9cz )f\
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces mYzcVhV
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) vbedk+dd?A
QY6O(=
:l;,m}#@
Glossary gW}} 5Xq
Reference +[_gyLN<5b
Index