切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7454阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ,^IZ[D>u)  
    dzv,)X  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of <9@]|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +81+4{*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear vYt:}$AE  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8rG&CxI  
    rDx],O _  
    %fid=fopen('e21.dat','w'); o&F.mYnqX  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) XX[Wwt  
    M1 =3000;              % Total number of space steps j_WF38o  
    J =100;                % Steps between output of space qp_ `Fj:  
    T =10;                  % length of time windows:T*T0 $}UJs <-F  
    T0=0.1;                 % input pulse width YlcF-a  
    MN1=0;                 % initial value for the space output location N evvA(M  
    dt = T/N;                      % time step q\HBAr y  
    n = [-N/2:1:N/2-1]';           % Index 6-X?uaY)os  
    t = n.*dt;   E)_!Hi0<s  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 qCkg\)Ks5I  
    u20=u10.*0.0;                  % input to waveguide 2 [;#.DH]  
    u1=u10; u2=u20;                 4"X>_Nt6  
    U1 = u1;   , sJfMY  
    U2 = u2;                       % Compute initial condition; save it in U =i5:*J  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. |AfQ_iT6c  
    w=2*pi*n./T; ?{z$ { bD  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T z57papo  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 0?Wf\7  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 i|,A1c"*  
    for m1 = 1:1:M1                                    % Start space evolution 0o=)&%G  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS :lQjy@J  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; OK J%M]<  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform %y7wF'_Y  
       ca2 = fftshift(fft(u2)); kJeOlO[  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 5)v^ cR?&  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   K':pU1  
       u2 = ifft(fftshift(c2));                        % Return to physical space WblV`"~e  
       u1 = ifft(fftshift(c1)); r~2@#gTbl  
    if rem(m1,J) == 0                                 % Save output every J steps. KC-aLq/  
        U1 = [U1 u1];                                  % put solutions in U array D&m"~wI  
        U2=[U2 u2]; f EiEfu  
        MN1=[MN1 m1]; !cq| g  
        z1=dz*MN1';                                    % output location 446hrzW>@  
      end .F3LA6se  
    end :::f,aCAu  
    hg=abs(U1').*abs(U1');                             % for data write to excel /"{ ,m!  
    ha=[z1 hg];                                        % for data write to excel Odtck9L  
    t1=[0 t']; gO%i5  
    hh=[t1' ha'];                                      % for data write to excel file ,UZE;lXJ'Q  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format >`|uc  
    figure(1) ?HyioLO  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn a4.: i  
    figure(2) 'htA! KHF  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 9qy 9  
    vEp8Hc  
    非线性超快脉冲耦合的数值方法的Matlab程序 GWZXRUc  
    ?N*@o.  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   MNmQ%R4jRN  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 QGj5\{E_  
    64>[pZF8  
    "wC5hj]  
    8Xzx ;-&4  
    %  This Matlab script file solves the nonlinear Schrodinger equations I3$vw7}5Y  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of lFV|GJ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >qvD3 9w  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 gj;G:;1m  
    ~ A|*]0,  
    C=1;                           5o ^=~  
    M1=120,                       % integer for amplitude #R~NR8( z  
    M3=5000;                      % integer for length of coupler :|Nbk58  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) L5uI31  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;l?(VqX_E  
    T =40;                        % length of time:T*T0. <!(n5y_  
    dt = T/N;                     % time step ^ 6|"=+cO\  
    n = [-N/2:1:N/2-1]';          % Index H=RV M  
    t = n.*dt;   =e/4Gs0*  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ^v5hr>m  
    w=2*pi*n./T; )9Ojvp=#r:  
    g1=-i*ww./2; DkKD~  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; }jgAV  
    g3=-i*ww./2; GnaV I  
    P1=0; M':.b+xN  
    P2=0; B9:0|i!!A`  
    P3=1; becQ5w/~  
    P=0; PW4Wn`u  
    for m1=1:M1                 O;?~#E<6w  
    p=0.032*m1;                %input amplitude c6)zx b  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 k ,(:[3J  
    s1=s10; B[X6A Qj}d  
    s20=0.*s10;                %input in waveguide 2 d`7] reh  
    s30=0.*s10;                %input in waveguide 3 3*JybMo"  
    s2=s20; (Fd4Gw<sq  
    s3=s30; 5&@U T  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   4344PBj  
    %energy in waveguide 1 rep"xV&|>o  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));    Z5-'|h$|  
    %energy in waveguide 2 4O^1gw  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   6 74X)hB  
    %energy in waveguide 3 !P3|T\|]+  
    for m3 = 1:1:M3                                    % Start space evolution :|3 C-+[  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS $?{zV$r1  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; %BLKB%5  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; QjU"|$  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform >C3 9`1  
       sca2 = fftshift(fft(s2));  N&.p\T&t  
       sca3 = fftshift(fft(s3)); e90z(EF?0  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   L1i> %5:g  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); vy?YA-  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); cEu98nP  
       s3 = ifft(fftshift(sc3)); EtGr& \,  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Mv =;+?z!  
       s1 = ifft(fftshift(sc1));  \RO Sd  
    end V= PoQ9d  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); m 0PF"(  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); `<~P>  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); rID]!7~  
       P1=[P1 p1/p10]; p2^OQK  
       P2=[P2 p2/p10]; [?*^&[  
       P3=[P3 p3/p10]; IPR396J+-  
       P=[P p*p]; >,vuC4v-  
    end jqedHn x  
    figure(1) 1j,Y  
    plot(P,P1, P,P2, P,P3); <~w#sIh  
    =x>k:l~s  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~