如何对中频误差进行评估和公差分析
本文我们介绍了如何使用周期性空间频率表面来建模旋转对称曲面的不规则度(例如由于金刚石车削而产生的不规则度)。
这些参数表示 Zernike 项在整个表面上具有约 5 微米的 RMS 误差,周期项振幅约为 0.5 微米,周期为 1 周期/毫米,或者说在整个表面有 20 个周期。 在进行公差分析之前,我们需要对公差参数进行一些调整。首先,由于我们的用户定义的中频“us_zernike+msf.dll”曲面不是TEZI支持的曲面类型之一,所以必须删除曲面1的操作数,并将其替换为TPAR。 举例来说,TPAR(1,9)指表面1的第9个参数(振幅扰动)。同理,TPAR(1,10)表示表面1的第10个参数(周期扰动)。TPAR(1,16)到TPAR(1,25)是中频曲面的Zernike项,如编辑器中所示,名义值为零或非常小,并且随着蒙特卡罗分析的每次迭代而增加。 灵敏度分析表明,上述TPAR(1,9)是影响最严重的因素之一,说明表面波纹状不规则度的幅度越大,系统的性能下降越大。我们还可以看到基于平方根和的均方根光斑半径预估值。 以RMS光斑半径为标准,优化后焦长度,蒙特卡罗循环1000次。 |

1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
文章点评