通过新的应用与传统
激光器 市场的占有率对比,
光纤激光器的市场进一步提升是有可能的。研究人员也正在使超快光纤激光技术应用在多用户应用上,如斯坦福SLAC 国家加速器实验室(National Accelerator Laboratory in Stanford)和劳伦斯伯克利国家实验室(LBNL)(Lawrence Berkeley National Laboratory in Berkeley),他们都在加利福尼亚州。同步加速器和自由电子激光器(FELs)的发展,给研究者提供了通往更亮、更短的X 射线源。多年来,斯坦福同步辐射
光源(SSRL)提供X 射线脉冲,研究
材料的分子和晶体结构。最近,一个“低-α 模式”的研发,X 射线脉冲可达到1 ps。
qL,tYJ<m% b$Vz2Fzx 同时,在斯坦福直线加速器中心(SLAC)的直线加速器相干光源(LCLS)提供亚百飞秒脉冲,在
波长短至0.15nm 时大约1012 个X 射线光子。这些超快稳固的X 射线脉冲,同时具有高的空间和时间的连贯性,使新的科学领域的研究从3-D 成像和重要的生物分子动力学研究到表征物质的瞬时状态研究。
;\p KDPr q7"7U=W0 在同步加速器和自由电子激光器(FELs)里,能量是通过电子束在一变化的磁场中传递得到的。电子行进路线受变换极性的磁体阵列影响,来回弯曲,导致以光的形式释放能量。就同步加速器而言,激光是空间不连续的,典型脉冲是100fs,但是自由电子激光器(FELs)发射出强烈的空间相干光光束,脉宽短至几十飞秒。为了工作在稳定的X 射线波长,电子束必须紧束,以便他们与释放出来的光相互相干(有效地实现受激辐射)。
=+AS/Jq 92^w8Z. 因为自由电子激光器FEL 没有谐振腔并且是一个单通的设备,需要一束非常明亮的激光束来达到增益饱和状态。有时这是通过使用传统的超快激光源(如的Nd:YLF 或掺钛蓝宝石),激发在加速的射频区域中的光电阴极,充当电子注射器来实现的。通过超快激光锁定到主时钟得到同步信号。主时钟正在控制直线性加速器。
Me=CSQqf< h[PYP5{L
W^s
;Bi+Nw 图1. 同步器原理图/结构简图
R9B&dvG 另外,世界各地的一些同步加速器,使用传统的超快光源,时间分辨束线(time-resolved beamlines)已经被开发,实现泵浦探测-研究。然而,对于这每一个结构,一个重大的缺陷是:传统的固态超快放大器通常消耗巨大的
光学平台,并需要日常维护保证它最佳的性能。
L:9F:/G H/Llj.-jg 斯坦福大学教授亚伦林登贝格(Aaron Lindenberg)在斯坦福同步辐射实验室使用Calmar公司Cazadero 系列的一键式超快光纤激光器克服了这个问题。设计应用在OEM 医疗和微电子加工,激光器结构紧凑,体积小,设置简单,方便安装,便于调整光束。此外,它的高脉冲能量(高达20uJ <500fs)和高重频发挥了斯坦福同步辐射实验室的优势。实现了一个良好的信噪比(time-resolved)的时间分辨的研究。
23h%
< , 8jyG"%WO
_)\c&.p]f 图2. 互相关cross-correlation 信号同步发生器脉冲宽度
;&