简介:本文讨论了如何使用FRED对球
透镜封装的
半导体激光二极管耦合到单模
光纤进行准确的建模,这是在光纤通信领域很常见的一个
光学系统。该模型演示了FRED传播相干光场的能力、它的精确激光二极管束(Laser Diode Beam)
光源模型以及准确的计算光纤耦合效率。
% W',c u 模型
:;q_f+U U9.=Ik 在FRED模型中使用的半导体激光二极管是Mitsubishi(三菱) ML725C8F,这是一个InGaAsP / InP多量子阱(MQW)
激光器,工作波长是1310nm。Mitsubishi光源说明书定义了输出光束的在x和y方向的发散角分别是25和30度(远场功率分布的全1/e宽度)。没有提及在x和y焦点位置的任何偏移,所以我们假定它们和光源处的分布是一致的。
kjC{Zr Dh(T)yc 我们在FRED中使用激光二极管束光源类型对激光二极管光源建模,以及设置光源产生相干输出。
afiK!0col2 ]!G>8Rc 图1. 激光二极管光源编辑
Po11EZa$a 注意到在激光二极管光束光源的设置里面,发散角由功率的1/e2标准定义。这就要求制造商提供的发散角要乘以一个开方因子。
w+q;dc8 ro^6:w3O^ 图2. 球透镜封装的激光二极管耦合到光纤系统原理图(侧视图)
_7.GzQJ 直径为1.5mm的球透镜是Mitsubishi激光二极管集成的一部分,它的位置在距离激光二极管发射表面1.88mm处。
R5&$h$[/ k-cIb@+" 在FRED中使用球形元件基元,就可以创建该透镜。为方便起见,全局坐标原点选在球透镜的输出表面与光轴的交点处。
pebx#}]p- ]VG84bFm 图3. 全局坐标原点的定义
tZu*Asx7 值得注意的是,我们使用了FRED的N-BK7模型来定义球透镜的材料,在1310nm波长处折射率大小是1.5036。
^Ii \vk 'Rkvsch 模型中使用的单模光纤(SMF)位于距离全局坐标原点1.9mm处,它的结构(由下图定义)基于单模光纤的典型值。光纤纤心的半径是5μm,且由直径为125μm包层包裹着。纤心和包层的折射率大小分别是1.465和1.47,它们之间的折射率差为0.36%。
~? FrI opcR~tg@r lc3S|4 图4. 单模光纤示意图
.W@4vrp@ 模型中还包含了一个吸收涂敷层,或者是夹层,覆盖在光纤表面。
ZA_zKJ[[7 @Tfwh/UN 在FRED中定义的光纤是一个组件,它包含了多个元件基元:一个圆柱体用于纤芯、光管用于包层和涂敷层。
jQxPOl$- ,+\4
'`
'/u:,ar ~ACP%QM= 注意到“Fiber Cladding”管道的内壁恰好与“Fiber Core”圆柱体的外壁是重合的。为了正确的建模,用户需要手动的设置包层管道的内壁为不可追迹(Never Traceable)。不这样做的话将会导致
光线追迹错误,因为两个表面放置在空间里完全一样的位置,而且它们具有两个不同的材料设置。对于“Fiber Coating”的内壁需要同样的设置。
Cb
)= n6 3KZ
y
H
cbh#E)[' |z#m 在这一模型中光纤涂层认为是吸收的,且拥有停止所有(Halt All)光线追迹控制。所有其它的表面是不加涂层的。
Wd^lt7(j J)$&