北大成像专家解读2014诺贝尔化学奖
今年诺贝尔化学奖三位获奖人,打破了光学成像中长期存在的衍射极限,将荧光显微成像的分辨率带入到“纳米时代”,为生命科学研究带来巨大变化。2014 年的诺贝尔化学奖在10月8日宣布授予美国科学家埃里克·白兹格(Eric Betzig)、威廉姆·莫纳尔(William Moerner)和德国科学家施泰方·海尔(Stefan Hell),以表彰他们在超高分辨率荧光显微技术领域的贡献。正如官方颁奖文中描述,这类技术从方法实现到在科学研究中大展身手虽然不过十几年时间,但已 对多个领域产生显著推动,并且可以预言在未来将给生命科学研究带来巨大的变化。 ![]() 什么是超高分辨率荧光显微技术 我们人眼一般最小能看见大约0.1毫米的东西, 而生物的基本单元 -- 细胞的直径平均约为20微米或0.02毫米, 所以对生物微观世界的观察需要使用光学显微镜。光学显微技术有很多优点,不但能放大微观世界,同时还对样品没有损害,并且可以特异地观察目标对象。这种特异性一般是通过荧光显微技术实现的。荧光是物质吸收光照后发出的光,一般发射光波长比吸收光波长较长,因此可以单独检测荧光,对目标实现高灵敏度的检测。然而,光学显微镜的分辨率是有限的。由于光的衍射,即使一个无限小的光点在通过透镜成像时也会形成一个弥散图案,俗称“艾里斑”。这样即便两个物点相距较远,其弥散斑却可能很近,以致无法区分。 ![]() 基于此原理,早在1873年,德国科学家恩斯特•阿贝(Ernst Abbe)提出了阿贝光学衍射极限,并作为其重要成就刻于其墓碑上。根据这个公式,光学显微镜的分辨率约为检测光波长的一半,300纳米左右(可见光的波长为400-700纳米),或是我们头发直径的1/300。超高分辨率荧光显微技术通过一系列物理原理和化学机制“打破”了这一衍射极限,把光学显微镜的分辨率提高了几十倍,使我们以前所未有的视角观察生物微观世界。 为什么生物学研究需要超高分辨率荧光显微技术 很多亚细胞结构都在微米到纳米尺度,衍射极限的存在限制了我们使用光学显微镜观察这些生物样品。比如细胞的骨架蛋白微丝非常密集,在荧光显微镜下其图像非常模糊,无法看到细节,而电子显微镜的分辨率可以达到1nm左右,非常清楚地呈现了细胞骨架的细节。然而电子显微镜几乎不能做活的样品,特异性也没有荧光显微镜好。因此,发展超高分辨率荧光显微技术对生物学研究意义非常重大。 ![]() 超高分辨率荧光显微技术的发展历程 目前的超高分辨率荧光显微技术大体可分为三类,包括受激发射损耗、结构光照明技术和单分子技术。其历史大体可以追溯到上个世纪80年代。这次获得诺贝尔化学奖的三位科学家是这个方向的先驱人物。 超高分辨率荧光显微技术的发展分为三个阶段。在1994年,此次获奖的德国人科学家施泰方·海尔当时还是博士后,最先从提出了受激发射损耗的方法(简称STED)来打破光学衍射极限,并最终于2000年在实验上得以实现。其利用了类似于产生激光的受激辐射原理,将一束形似于面包圈的激光光斑套在用于激发荧光的激光光斑外,这个面包圈激光可以抑制其区域内荧光分子发出荧光,这样通过不断缩小面包圈的孔径就可以获得一个小于衍射极限的荧光发光点,并通过扫描实现超高分辨率的图像,将光学显微镜分辨率提高了近10倍。海尔现为德国哥根廷大学教授和德国马克斯·普朗克生物物理化学研究所所长。从2000年开始,他不断改进STED技术,使其更加适用于生物研究。另外,他还通过相似原理发明了一系列的超高分辨率技术,统称为可逆饱和荧光跃迁(RESOLFT),为超分辨率荧光显微成像技术的发展做出了巨大贡献。 ![]() 基于结构照明原理的超高分辨率技术是美国科学家麦茨·古塔弗森(Mats Gustafsson)在2000年发明的,非常适于细胞研究,可惜分辨率只提高了一倍。这个技术基于两个高空间频率的图案重叠可以形成低频率莫尔条纹的原理,通过解析莫尔条纹实现超高分辨率成像。可惜古塔弗森于2011年51岁时因癌症去世,英年早逝,无缘分享这次的诺贝尔奖。 |