樓主問了一個好問題。 S{f,EBE
C+5X8
想像一下我們要自己繪出如圖的球差曲線,該怎麼做? G#6Z@|kVw
r
)_*MPY
對瞳高不為零的情況,可以用真實光追跡的方式計算,求出光線的出射高度及角度,再計算它與光軸的交點位置。 qK9A
/Mc
hdSP#Y'-
但當物在軸上點且瞳高為零時,光線就在光軸上,使用真實光追跡無法求出與光軸的交點位置,因為它們根本是同一條線,計算結一定會產生無解狀況,通常是遇到除以零的數學錯誤。 ;c DMcKKIA
t imY0fx#
所以有二種做法。第一種是改用近軸追跡公式,近軸光表示光線離光軸很近,光線高度及角度都不大,此時非線性的光線折射及傳遞公式都成為線性的公式,而能確定唯一的物像距關係及放大率了。請想像,近軸是無限逼近但不是光軸,有點微積分的觀念,逼近無限小但不是零。或許樓主可以把圖中軸上三個點的數據想像成是由瞳高=0.000000000000000001的光線算出來的。 6 v~nEw
6PS[OB{3
第二種是仍然以真實光線追跡,但以很小的瞳高代替零。但這也有一個問題,瞳高真的太小,計算時有可能因為電腦程式變數的精度有限,造成計算結果誤差很大。 >gM"*Laa?
^&8hhxCPu|
希望這樣的解釋方法有幫助。 x#zj0vI-8
Oe
:S1 f