MIT 光学 PPT (PDF版)23次课 下附目录 k6\^p;!Y
1 Introduction; brief history of optics; absorption, refraction; laws of reflection and refraction vs&8wbS)
2 Laws of reflection and refraction; prisms; dispersion; paraboloidal reflector kD.pzxEM
3 Perfect focusing; paraboloidal reflector; ellipsoidal refractor; introduction to imaging; perfect on-axis imaging using aspheric lenses; imperfect imaging using spherical surfaces; paraxial approximation; ray transfer matrices giavJ|
4 Sign conventions; thin lens; real and virtual images !Ngw\@f
5 Imaging at finite distances with thin lenses; thick lenses; the human eye; image formation by a composite lens m|svQ-/j
6 Aperture stop; entrance and exit pupils; numerical aperture (NA); field stop; entrance and exit windows; field of view (FoV) dv
N<5~
7 Ray tracing with mirrors; basic optical systems: single lens magnifier, eyepiece, microscope 5c-N0@\
8 Basic optical systems (cont.): telescope; chromatic aberration; geometrical aberrations: spherical, coma sNU}n<J-
9 Geometrical aberrations (cont.): astigmatism, field curvature, distortion; optical design demo; GRadient INdex (GRIN) optics: quadratic and axial profile; introduction to the Hamiltonian formulation }lZ>
11 Hamiltonian formulation of ray tracing; analogies between Hamiltonian optics and Hamiltonian mechanics; introduction to waves 2)/NFZ
12 1D wave equation; complex (phasor) representation; 3D waves: plane, spherical l!IKUzt)7
13 3D waves: plane, spherical; dispersive waves; group velocity; spatial frequencies; introduction to electromagnetics; Maxwell's equations; derivation of the wave equation for light <Mf*l)%*
14 Maxwell's equations (cont.); polarization justification of the refractive index; electromagnetic energy flux and Poynting's vector; irradiance (intensity) HT`1E0G8)
15 Interference; Michelson and Mach-Zehnder interferometers; Huygens principle; Young interferometer; Fresnel diffraction 0NO1M)HQv
16 Gratings: amplitude, phase, sinusoidal, binary EA{U!b]cU
17 Fraunhofer diffraction; review of Fourier transforms and theorems W$?e<@
18 Spatial filtering; the transfer function of Fresnel propagation; Fourier transforming properties of lenses #^mqQRpgq
19 4F system (telescope with finite conjugates) as a cascade of Fourier transforms; binary amplitude and phase pupil masks; Point Spread Function (PSF) R21~Q:b!
20 Shift invariance; Amplitude Transfer Function (ATF); lateral and angular magnification in the 4F system; relationship between NA, PSF, and ATF; sampling and the Space Bandwidth Product (SBP); advanced spatial filtering: pupil engineering, phase contrast imaging; Talbot effect kB\kpW
22 Temporal and spatial coherence; spatially incoherent imaging; Optical Transfer Function (OTF) and Modulation Transfer Function (MTF); comparison of coherent and incoherent imaging Bo\D.a(T
23 Imaging with a single lens; resolution $R^lo$(
25 Resolution (cont.); defocused optical systems yi!`V.
26 Depth of focus and depth of field; deconvolution and Tikhonov regularization; polarization; wave plates; effects of polarization on high-NA optical systems