以像差理论为指导,通过反复的尝试、计算,修改来获得最佳的结果。这是经典光学设计的基本做法。即使在使用光学软件自动优化像差的今天,设计者了解各种透镜的结构形式、像差特性及为什么会产生这种特性,仍然是十分重要的。现在的光学设计师都采用光学软件,但很多设计师对不同结构的透镜的性能及作用的认识却很少,这是不够的。而优化程序很多时候,采用的是数学方法,把很多经典的、已经重复验证很多次的成功的结构,忽略掉了。仅仅使用软件优化光学系统,有时是解决不了问题的。因此,对光学系统的结构、像差性能了解清楚,能更好的发挥设计软件的作用。 Tx|}ke~
n_qDg
最近重新看了一下光学理论知识,把以前手动追迹光线的公式,在Matlab里编程实现了一下。程序编写完成之后,以一个简单的双胶合透镜为例,做了一下验证。以简单双胶合为例,比较容易和以前的数据对照,验证程序正确与否。验证成功之后,即可代入复杂光学系统结构参数,计算各面球差贡献、各面球差的初级球差、二级球差、san 级球差或更高级球差。(高级像差的计算,也可以在Zemax里,采用近轴、实际光线操作数,计算出来。)目前程序里只计算到san 级。先分享一个双胶合透镜的追迹、计算结果。之后,会分享一个消带球差的透镜组追迹、计算结果。 Wi5rXZS
如图示:黑色为透镜组球差曲线,初级、二级、san 级分别为r、g、b。 |vI1C5e
s&