程序如下: +-:o+S`q~
% By Ruibin 08-9-25 * /^}
% Instruction:This program help design LED collimating lens , feedback aspheric parameters and several chief dimensions. 9/h[(qvT
97 k}{tG
clear all;clc "i,ZG$S#E
q.bxnta"
% The Frist Step: Define independent parameters tz9"#=}0
r=3.25; %选择开孔半径 joBS{]
R=4.25; %定义曲面底部半径 U&W/Nj
d=1; %设置透镜前方平板高度 wpg7xx!
n=1.4935; %定义材料折射率 /s@j{*Om
dividing_angle=24; %定义Core与TIR的分界角 WOQ>]Z
min_angle=1; %设置计算精度 }=d}q *
N=4; %设定拟合非球面系数阶数 .q<5OE(f
@rS(3wu_&
% The Second Step:Caculate induced variable ^B!()39R?
angles_Core=(dividing_angle:-min_angle:0);angles_TIR=(90:-min_angle:dividing_angle); _%u t#
num_Core=length(angles_Core);num_TIR=length(angles_TIR); 9t!Agxm
for i=1:(num_Core) {dYz|O<
a_Core(i)=(angles_Core(i)*pi/180); I2WWhsNC
k1(i)=cot(a_Core(i)); q[(1zG%NbA
k2(i)=(-k1(i)+(n^2*k1(i)^2+n^2)^(1/2))/(n^2*k1(i)^2-k1(i)^2+n^2); M<r]a{Yv
end <;*w97n
k1(num_Core)=999;k2(num_Core)=0; F#^/=AR'
for i=1:num_TIR ]wwN mmE
a_TIR(i)=(angles_TIR(i)*pi/180); m=25HH7enb
k3(i)=tan((pi/2+asin(cos(a_TIR(i))/n))/2); FXul
u6"SX
k4(i)=tan(asin(cos(a_TIR(i))/n)); 48Jt1^
end n&2OfBJ
X0_TIR=R;X0_Core=r;Y0_TIR=0;Y0_Core=r*cot(a_Core(1)); eV"s5X[$
Sd/7#
% The Third Step:Solve functions Q <ulh s
for i=1:num_Core %Solve the curve of Core .hJcK/m
syms x; [#(',~lN7
f1=k1(i)*x; aeDhC#h
f2=k2(i)*(x-X0_Core)+Y0_Core; tn;{r
f=f1-f2; [6Q1yNE
x=double(solve(f));y=k1(i)*x; 3WM*4
X0_Core=x;Y0_Core=y; NA$%Up
Px_Core(i)=X0_Core;Py_Core(i)=Y0_Core; ^kke
end ]cM8TT
for i=1:num_TIR %Solve the curve of TIR MDBqIL]Hc
syms x; 5,+fM6^V
f1=k3(i)*(x-X0_TIR)+Y0_TIR; {Wndp%
f2=k4(i)*(x-r)+r*cot(a_TIR(i)); CjEzsjqe<I
f=f1-f2; qP-_xpu]R
x=double(solve(f));y=k3(i)*(x-X0_TIR)+Y0_TIR; 4dy!2KZN
X0_TIR=x;Y0_TIR=y; Wt.['`c<
Px_TIR(i)=X0_TIR;Py_TIR(i)=Y0_TIR; ~14|y|\/
end y&/bp<Z
i-9W8A
% The furth Step:Fitting the curve r4d#;S9{o
P_Core=polyfit(Px_Core,Py_Core,4); S f6%A
P_TIR=polyfit(Px_TIR,Py_TIR,4); Ezev
^O]
kgI8PybY
% The fifth Step:Feedback chief dimensions of the lens and Create it T[<554
%Feedback dimensions of the whole lens u@tH6k*cBz
result='透镜尺寸如下:' Ta$55K0
Diameter_of_lens=2*Px_TIR(num_TIR) uAs!5h
Thickness_of_lens=Py_TIR(num_TIR)+d ^\[c][fo
Diameter_of_Core=2*r ?vFtv}@\
Thickness_of_front_pannel=d >
H&v
Bottom_thickness=R-r ,&
wd
Lowest_Core=P_Core(5) >f4[OBc
5gkQ6&m
%Feedback dimensions of Lens part TIR bk&kZI.D
result='TIR系数如下:' x4h.WDT$
Thickness=Py_TIR(num_TIR)-P_TIR(5)+d L c
)i
Aperture=Px_TIR(num_TIR) GQjwr(
Obstruction=r vz)R84
Position=P_TIR(5) s>W :vV@
format short e; 6"NtVfui
Aspheric=[P_TIR(4) P_TIR(3) P_TIR(2) P_TIR(1)] *>2e4j]
format short; )!U@:x\K
i6$HwRZm#
%DDE Connection 2%pU'D:
TP_COMMAND = ddeinit('TracePro','Scheme'); e1y#p3 @d
%Create TIR |~#A?mK-
cmd =['(define TIR (insert:lens-element "PLASTIC" "pmma" (list 0 0 7.0306e-002 1.2580e-001 -2.5732e-003 -2.5281e-006) 18.6774 (list 0 0)(list "cir" 13.6051 0 0 0)(list "cir" 3.25 0 0 0)))']; l *{Bz5hc
ddeexec(TP_COMMAND,cmd); p2< 927z
cmd =['(entity:move TIR 0 0 -2.3712)']; +
)z5ai0m
ddeexec(TP_COMMAND,cmd); )a5ON8?
cmd =['(property:apply-name TIR "TIR")']; !D ?(}nag
ddeexec(TP_COMMAND,cmd); \ueCbfV!Z4
4GH &u,
%Feedback dimensions of Lens part TIR a5aHv/W#P
result='Core系数如下:' 6QJ.=.>b
Thickness=Py_TIR(num_TIR)-P_Core(5)+d =qbN?a/?2
Aperture=r sAPQbTSM
Obstruction='None' J{\(Y#|rHs
Position=P_Core(5) )\PX1 198
format short e; We\i0zUU
Aspheric=[P_Core(4) P_Core(3) P_Core(2) P_Core(1)] cLRzm9
format short; q/Vl>t
%Create Core bg/=P>2
cmd =['(define Core (insert:lens-element "PLASTIC" "pmma" (list 0 0 -2.6211e-002 1.9124e-001 -1.7949e-002 2.8016e-004) 10.3569 (list 0 0)(list "cir" 3.2500 0 0 0)))']; s5 {B1e
ddeexec(TP_COMMAND,cmd); o4OB xHKy
cmd =['(entity:move Core 0 0 5.9493)']; {$5g29
ddeexec(TP_COMMAND,cmd); c##tP*(
cmd =['(property:apply-name Core "Core")']; ZJ~0o2xZ'
ddeexec(TP_COMMAND,cmd); J}+N\V~
"q1S.3V;
%Create Lens Om;aE1sW
cmd =['(define Unite (bool:unite TIR Core))']; WW+F9~S
ddeexec(TP_COMMAND,cmd); mIp> ~
cmd =['(define block (insert:block 100 100 100))']; &