TFT-LCD技术的高度发展,已经并继续改变着现代社会人们的生活方式。TFT-LCD因其分辨率高,没有闪烁,体小量轻,没有用几年的时间便在计算机终端显示领域取代已经有百年历史的CRT显示的垄断地位,同时还创立了以笔记本电脑和手机为代表的新的移动显示应用领域。TFT-LCD在以字符和图表显示为主要目标的计算机终端显示领域取得的巨大成绩,大大鼓舞了LCD工作者向显示的最高领域——视频图像显示乃至高清晰度视频图像显示进军的信心。一段时间以来,小尺寸液晶电视从商场货架的角落里走了出来,开始了向CRT电视挑战的进程。现在100"、84"的全高清LCD电视样品已经问世, 32"、37"和42"的液晶电视正越来越受到消费者的欢迎。 *]L(,_:"
qDMVZb-(#
然而人们在赞赏液晶电视分辨率高,图像精细的同时,也发现了液晶电视在显示运动图像时会出现拖影和模糊的情形,这是显示视频图像所不能允许的。人们很容易联想到液晶材料响应速度不够高是引起模糊的主要原因。可是在把响应速度提到足够高以后,上述现象有了改善,但仍不能消除。人们才转而向更深入的方向进行研究。原来TFT-LCD工作在保持模式(Hold-Type)是产生运动图像模糊的重要原因。 K?M{=$N
j|Q*L<J
TFT-LCD的保持模式及在显示运动图像方面的局限 [Pn(d[$z
无源LCD由于液晶像素的双向导通特性,动态矩阵选址时会出现串扰现象,扫描行数越多,串扰就越严重,因此无法实现大容量的信息显示。于是人们在每个像素上串入一个薄膜晶体管,用TFT的通断来控制像素的通断。TFT的串入使像素双向导通的特性变成了单向导通,矩阵选址的串扰消失了,扫描行数从理论上可以无穷多,可以实现大容量的信息显示。为了提高TFT-LCD的显示质量,人们往往在串入TFT的同时,还设计一个与液晶像素并联的存储电容CS,如图1所示,TFT打开时,信号电流给CS充电,在CS上形成一个与信号大小成正比的直流电压。在TFT关闭期间,CS上的电压在整个帧周期内基本保持不变,并驱动该像素始终保持在相应的开启状态。这就是所谓的“保持”型工作状态。存储电容CS的引入使TFT-LCD的占空比提高到1,其对比度和显示质量达到了静态驱动的水平,使得TFT-LCD很快在计算机终端显示上获得了巨大的成功。
-tQi~Y[]
TFT-LCD在显示运动图像时出现的问题,使人们不禁想起了CRT。为什么CRT在显示运动图像时没有类似的情况发生?经过仔细比较和深入研究发现,CRT是工作在脉冲(impulse)发光的工作模式,和TFT的保持模式有很大的不同。 [,s{/32s
进一步的研究表明,矩阵显示有以下几种显示形式: ~1_v;LhH5+
逐点脉冲发光,如CRT。 MLu@|Xgh
逐行顺序显示,如无源LCD,无源OLED,FED等。 nnv&