光磁共振实验装置用于近代物理实验。该实验所涉及的物理内容丰富,可使学生直观的了解到光学、电磁学及无线电子学等方面的知识,并能定性或定量的了解到原子内部的很多信息。它是典型的波谱学教学实验之一。光磁共振实验中使用了光泵及光电探测技术,其灵敏度比一般磁共振探测技术高几个数量级。这一方法在基础物理学的研究 、磁场的精确测量以及原子频标技术等方面都有广泛的应用。 ,]5Ic.};p
一.实验目的 7_# 1Ec|;
1. 掌握光抽运和光检测的原理和实验方法,加深对超精细结构、光跃迁及磁共振的理解 。 ++Ww88820
2. 测定铷87及铷85 的因子,地磁场垂直和水平分量等,培养分析物理现象和处理实验数据的能力。 >Ng)k]G
二.实验原理 j8K,jZ
(一)铷(Rb)原子基态及最低激发态的能级 wl1m*`$
实验研究对象是铷的气态自由原子。铷是碱金属,它和所有的碱金属原子Li、Na、K一样,在紧紧束缚的满壳层外只有一个电子。铷的价电子处于第五壳层,主量子数n=5。主量子数为n的电子,其轨道量子数L=0,1, …,n-1。基态的L=0,最低激发态的L=1。电子还具有自旋,电子自旋量子数S=1/2。 dC<LDxlv
由于电子的自旋与轨道运动的相互作用(即L-S耦合)而发生能级分裂,称为精细结构。轨道角动量Ps、的合成角动量PJ=PL+PS。原子的精细结构用总角动量量子数J来标记,J=L+S,L+S-1, …,│L-S│。对于基态,L=0和S=1/2,因此Rb基态只有J=1/2。其标记为52S1/2。铷原子最低激发态是52P1/2及52P3/2双重态。这是由于轨道量子数L=1,自旋量子数S=1/2。52P1/2态的J=1/2, 52P3/2态的J=3/2。5P与5S能级之间产生的跃迁是铷原子主线系的第1条线,为双线。它在铷灯光谱中强度是很大的。52P1/2→52S1/2跃迁产生波长为7947.6?的D1谱线,52P3/2→52S1/2跃迁产生波长7800?的D2谱线。 tV/Z)fpyH
原子的价电子在LS耦合中,总角动量PJ与原子的电子总磁矩μJ的关系为 W~Z<1[
(1) J/A[45OD
(2) x|KWyfOS
gJ是朗德因子,J、L和S是量子数。 s9oO%e<
核具有自旋和磁矩。核磁矩与上述原子的电子总磁矩之间相互作用造成能级的附加分裂。这附加分裂称为超精细结构。铷元素在自然界中主要有两种同位素,Rb87占27.85%, Rb85占72.15%。两种同位素铷核的自旋量子数I是不同的。核自旋角动量PI与电子总角动量PJ耦合成PF,有PF=PI+PJ。JI耦合形成超精细结构能级,由F量子数标记,F=I+J、…, │I-J│。Rb87的I=3/2,它的基态J=1/2,具有F=2和F=1两个状态。Rb85的I=5/2,它的基态J=1/2,具有F=3和F=2两个状态。 :3$}^uzIq
T%R:NQf
整个原子的总角动量PF 与总磁矩μF之间的关系可写为 [= "r<W0
(3) :h,`8 Di
其中的gF因子可按类似于求gJ因子的方法算出。考虑到核磁矩比电子磁矩小约3个数量级,μF实际上为μJ在PF方向的投影,从而得 >b.^kc
(4) B[9 (FRX
gF是对应于μF与PF 关系的朗德因子。以上所述都是没有外磁场条件下的情况。 cubUq5
q_Lo3|t i
如果处在外磁场B中,由于总磁矩μF与磁场B的相互作用,超精细结构中的各能级进一步发生塞曼分裂形成塞曼子能级。用磁量子数MF来表示,则MF=F,F-1,…,-F,即分裂成2F+1个子能级,其间距相等。μF与B的相互作用能量为 KTEZ4K^o=
u? fTL2~
(5) drq hQ
式中μB为玻尔磁子。Rb87的能级、Rb85的能级见图,为了清楚,所有的能级结构图均未按比例绘制。各相邻塞曼子能级的能量差为 (6) yA[({2%
可以看出△E与B成正比。当外磁场为零时,各塞曼子能级将重新简并为原来能级。 n,O5".aa<
bY~@}gC**@
(二)增大粒子布居数之差,以产生粒子数偏极化 ,DnYtIERo
气态Rb87原子受D1σ╋左旋偏振光照射时,遵守光跃迁选择定则 8p1ziz`4>$
△F=0,±1 △MF=+1 nIfCF,6,
在由52S1/2能级到 52P1/2能级的激发跃迁中,由于σ╋光子的角动量为+h,只能产生△MF=+1的跃迁。基态MF=+2子能级上原子若吸收光子就将跃迁到MF=+3的状态,但52P1/2各子能级最高为MF=+2。因此基态中MF=+2子能级上的粒子就不能跃迁,换言之其跃迁几率为零。见图。由52P1/2到52S1/2的向下跃迁(发射光子)中,△MF=0,+1的各跃迁都是可能的。 ,L OQDIyn
经过多次上下跃迁,基态中MF=+2子能级上的子粒子数只增不减,这样就增加了粒子布居数的差别。这种非平衡分布称为粒子数偏极化。类似地,也可以用右旋圆偏振光照射样品,最后都布局在基态F=2,且MF=-2的子能级上。原子受光激发,在上下跃迁过程中使某个子能级上粒子过于密集称之为光抽运。光抽运的目的就是要造成基态能级中的偏极化,实现了偏极化就可以在子能级之间进行磁共振跃迁实验了。 GYB+RU}],
m?[5J)eR
(三)驰豫时间 {I{:GcS
在热平衡条件下,任意两个能级E1和E2上的粒子数之比都服从波耳兹曼分布N2/N1=e-△E/kT,式中△E= E2-E1是两个能级之差,N1、N2分别是两个能级E1、E2上的原子数目,k是玻耳兹曼常数。由于能量差极小,近似地可认为个子能级上的粒子数是相等的。光抽运增大了粒子布居数的差别,使系统处于非热平衡分布状态。 V84*0&q