物理气相沉积技术是一种对材料表面进行改性处理的高新技术, 最初和最成功的发展是在半导体工业、航天航空等特殊领域。在机械工业中作为一种新型的表面强化技术起始于80 年代 _(m't n>
初, 而且主要集中在切削工具的表面强化。以改善机械摩擦副零件性能为目的的研究近10 多年才受到广泛重视, 是现在重点开发的新领域。物理气相沉积技术作为高新技术在先进制造技术 #YDr%>j
和技术进步中占有重要的地位, 本文对其最新发展的部分概况作一介绍。 v(OBXa9
1 应用对象不断扩展 l!#m&'16"
美国Balzers Too l Coat ing 公司1994 年评估了用PVD 法制取的薄膜在2000 年前的市场发展前景[1 ] , 认为, 1980 年PVD 镀层95% 用于改善切削工具寿命, 在2000 年50%PVD 镀层将用 8 6f2'o+
于提高切削工具性能, 另50% 将用于改善冲压模、磨损零件部等的寿命。由于大量采用新技术和新工艺, 使物理气相沉积技术近10 年在模具和磨损零部件的应用上迈进了一大步, 正在改变那 #_mi `7!B#
种PVD 就是刀具上镀T iN 的传统概念。 (M
=Y&M'f
物理气相沉积法用于零件防蚀抗磨损镀层越来越多, 取得非常好的效果。德国Do rrenberg Edelstah l 公司开发了一种在压模上使用电弧蒸发镀沉积、具有高附着力的CrN 涂层的PVD Y!6/[<r$~k
法[2 ] , 镀层性能高于T iN 或T iCN 镀层, 可用于铝件的加工模具上。 fw oQ'&
英国Cambridge 和Tecvac 公司完善了在加工黄铜、T i 和A l的加工模具上的CrN 沉积法[3 ] , 镀层厚度3~ 20 Lm, 镀层具有良好的附着性, 镀层显示了较好的使用效果(包括挤压, 成型以及塑 1 nvTce
料加工模具)。M ult iA rc (U K) L td 在伯明翰Too ling ’95 展览会上介绍了该公司一种用于提高冲模寿命的PVD 工艺, 6~ 8 Lm厚的沉积层提高冲压4 mm 厚钢质变速箱壳的冲模寿命, 由冲压 vzF5xp.
500 次增大到20 400 次, 且不需要再抛光。 s:00yQ
日本在活塞环等零件表面采用离子镀法镀覆具有CrN 或Cr2N 成分、附着力强的耐磨膜[4 ] , 膜层中氮浓度由基体向表面膜层表面不断增大。镀层在不断变更氮分压情况下用蒸发源铬和 smG>sEp2
反应气体N 2 制成, 镀膜层厚度10~ 60 Lm, 硬度1 500~ 2 000HV , 远高于电镀Cr 和氮化。它的耐粘着性能约是电镀Cr 的1. 5倍, 且其实际耐久性是电镀Cr 的4~ 10 倍, 具有运行平稳、无拉 x.1-)\
缸、抱缸现象, 效果十分理想, 是一种无公害的、可取代电镀Cr处理的表面处理手段。但离子镀时, 工件温度在400~ 500 ℃便导致活塞环类零件的应力松驰、弹性下降, 可能会影响其广泛应用。 Og;-B0,A
装饰镀也是新的应用对象之一, 德国的L eybo ld 是老牌的PVD 设备和技术公司, 近年来推出了一些金属或非金属构件装饰处理的PVD 沉积技术, 其中较引入注意的是磁控溅射沉积新 VL'
fP2
型ZrN 技术。它具有青铜色外表, 极低的电化学电位, 耐蚀性极好, 同时也很耐磨, 是一种非常好的表面处理方法。 Ev!{n
新的专利和研究报告表明[4, 6~ 7 ] , 寻找PVD 沉积T iA lN、CrN、WCöC 等镀层的新应用领域是各国研究人员努力的方向,并已取得一定进展。 RtG}h[k/X
2 沉积的基体温度更低 ?^:h\C^a"
由于应用对象的扩展, PVD 处理的材料也由原来较单一的HSS、硬质合金等材料不断向中低合金结构钢、模具钢, 乃至有色金属等其他材料类型拓宽。为保证PVD 表面处理后被处理件整 vpPl$ga5bY
体材料的性能不下降, 降低PVD 处理温度, 在较低的温度下获得性能优良的沉积层, 已成为一个主要的技术问题[8~ 10 ]。 KYJjwXT28W
磁控溅射技术是PVD 技术中的一大主流技术, 被称为低温沉积最有效的方法。在磁控溅射时, 电子被暗场罩或专门附加的阳极吸收掉, 所以, 基体的温度比传统的溅射要低。而且研究表 gPC*b+
明[11, 12 ] , 通过一些特殊手段可以使基体的温度降低到接近室温,而使塑料或其他温度敏感材料可作为基体进行沉积处理。 bVmAtm[
1998 年Teel Coat ing L td 提出, 在低温下采用磁控溅射沉积高质量T iN、T iCN 镀层技术。根据制件的用途, 在沉积过程中制件的加热温度可降到小于70 ℃, 从而扩大类似镀层可能的使用 GRy-+#,b"
范围[13, 17 ]。 e T'nl,e|
美国No rthw estern 大学的研究表明, 利用磁控溅射PVD 技术可以在基体低温(不改变其温度敏感性) 情况下得到新的镀层,它们用于摩擦工程和微电子(工程) 是有广阔前途的[14 ]。Bonmas W4;m H}#0
H. 等在350 ℃下采用磁控溅射对高速工具钢和滚珠轴承沉积T iN 层[5 ]。 K;7f?52
日本专利466659[16 ]推荐一种采用PVD 法生成T iN 涂层材料的方法, 其温度为20~ 600 ℃, 气体压力为1. 33 × 101~1. 33×10- 2 Pa, A röN 2 1ö15~ 1ö30。把低温T iN 涂层作为专利方法提出。 Y2o6kS{x
德国BAM 与日本东京技术研究所合作, 在200 ℃用非平衡磁控溅射沉积多层T iN 2CrA lN 和CrN 2CrA lN 复合涂层[24~ 26 ]。1997 年Slovenia 的N avinsek B [42 ]等提出, 150 ℃下在软金属上 I8OD$`~*U6
溅射沉积T iNöC rN 的技术。 xf%4, JQ
英国的Loughbo rough 大学近来成功地在室温条件下用磁控溅射过程中的基体温度(由350~ 500 ℃降低至150 ℃左右) ,功地将T iN、CrN 涂层用于人工牙齿模具表面和铜焊接触头表 ?muzU.h"z
面, 其使用寿命提高了5~ 10 倍。 \.XLcz
德国的F raunhofer 研究所, 对现有的类金刚石膜DLC 技术进行改造, 在200 ℃以下用PVD 方法生成多晶金刚石膜, 它既有很小的摩擦系数又同时具有极高的硬度, 因而称之为摩擦学功 ?=GXqbS"
能薄层(T ribo logically effect ive th in coat ign) , 可以使用在机械零部件上, 并在无润滑或少润滑条件下正常工作[45 ]。 5 ,0d
虽然文献中一般都只介绍研究结果, 很少介绍工艺, 但是可以肯定, 利用磁控溅射方法在低温下实现耐磨涂层表面沉积是可能的, 也是有前途的。 +.RKi!
3 走向新型、复合及多层化 @`FCiH M
PVD 沉积技术应用于模具和摩擦副零件比用于切削刀具的摩擦学系统要求高, 为此, 沉积层的类型也要进一步改进, 以满足更高的性能要求。选用新型镀层、复合镀层(多元镀层) 以及多层 _md=Q$9!m
镀层是进一步提高如结合强度、基体承载能力以及基体和涂层匹配性等性能的有效途径[12, 18~ 22 ] , 从而极大地改善其可靠性和使用寿命。 PNW \*;j
捷克采用加Sc 靶的磁控溅射技术获得含Sc 的T iC 和T iN镀层, 因Sc 的固溶强化提高了T iC 和T iN 镀层硬度。英国Monaghan D P 等以不平衡磁控溅射镀膜工艺T iA lN、T iZrN、T iCrN、T iN bN、CrZrN、CrMoN 和CrCN 薄膜, 这些工艺可以获得硬度4 000 HV , 600~ 800 ℃时热稳定性好、附着强度高的涂层, 并开发出总厚度小于10 nm、硬度很高的多层薄镀层的工艺。例如T iC 类金刚石碳系列超点阵结构的厚5 nm 的多层镀层硬度达3 500 HV , 摩擦系数0. 2, 而T iNöN 系列厚10 nm 的多层镀层, 硬度达5 000 HV。 4`#F^2r!
Huang Ch i2Tung 等人[43 ]通过改变r. f. 磁控溅射靶, 将复合元素和靶元素实行靶表面面积和分布的合理匹配, 可得到T iöA l比不同的沉积层。如将A l 面积从0 增至117. 8mm2, 则涂层成分 D71;&G]0
由T iN 变成T i0. 5A l0. 5N , 厚度基本不变的前提下, 硬度升高约60% , 其他性能亦有改善。Hammer P 等人[44 ]将BN 均匀弥散于T i 靶中, 通过改变B 和T i 的浓度比获得具有不同成分的T i2B2N @v\*AYr'M
的化合物涂层。当其组成相T iB2 和T iN 共存并具有等浓度时,最高硬度可达5 500 HV 以上, 但必须解决涂层和基体的结合力问题, 以提高其实用性。 OdMO=Hy6d
美国No rthw estern 大学的研究表明,MoNX、CrNX 和N bNX镀层呈现良好的摩擦工艺性能, B2Mo2N 镀层能提高接触疲劳,T iNöNbN 多层多晶镀层具有高达5 200 HV 的硬度[39~ 40 ]。 w@2Vts
英国的Teer Coat ing L td 研制了用不平衡磁控溅射沉积制备MoS2ö金属复合层的设备和工艺方法, 这种复合沉积层在金属切削和成型加工的应用中均取得很好的效果, 甚至优于普通T iN 涂层[15 ]。 Cw5%\K$=
德国Hermann A. Jehn 研究了多源(多靶) 法沉积多组分PVD 硬质涂层(T i、A l)N、(T i、W )N、(Cr、A l)N 等, 比较了单独靶源, 双靶或4 个以上多靶设备。指出, 多组分复合层有助于提高 UR(-q
PVD 层性能, 多源(多靶) 技术易于控制PVD 层的化学成分, 满足对多层复合层(多组分层) 的特殊要求。 avmcw~
TF
美国专利54233923 用T ia Sib 靶反应沉积T i2Si2N 复合材料硬膜[23 ] [ 其中75% (at) ≤a ≤85% (at) , 15% (at ) ≤b ≤25%(at) , a+ b= 100% (at) ], 反应气体N 2 分压处于恒定式连续或阶 _w@qr\4i=
梯式的变化。用这样的方法溅射沉积, 所得的涂层含有T iN 微细晶粒, T iN 晶粒均匀分布在非晶态T i2Si 合金沉积层中, 弥散在基体中的微细结晶颗粒T iN 呈连续的或阶梯式的沿涂层横向长 ?}Z1(it0
大。 M>jtFP<S
德国专利4405477 推荐采用不平衡磁控溅射和阴极电弧蒸发方法进行复合镀[24 ] , 此法可得到双层镀层。第一层借助不平衡磁控溅射沉积, 然后在一定的时间间隔内沉积第二层, 镀层材料 W"L&fV+3
可以采用T i、Zr、Hf 的氮化物, 碳氮化物或它们的含铝合金。 :hGPTf
日本也在多层PVD 技术研究方面投入很大, 丰田技术研究院研制了T iN 2Cr2A lN 以及CrN 2CrA lN 多层沉积层, 性能很好。 ~-a'v!
用新型镀层、复合镀层或多层镀层来改善PVD 沉积层的性能以适应不同需要是PVD 技术的发展方向之一。 W:i?t8y\y
4 改变制备工艺提高摩擦学性能 k\Q,h75
英国近期的研究表明[25, 26 ] , 为了提高物理气相沉积方法处理工具的耐磨性, 应注意底层的制备即机加工和热处理、工具几何形状以及表面质量, 这对于T iCN 镀层具有很大意义。 >-E<