专就激光器切割(Laser Cutting or Laser Scribing)而论,其原理系利用高能量集中于极小面积上所产生的热效应(Thermal Technique), 所以非常适用于切割具有硬(Hard)、脆(Brittle)特性的陶瓷材料, 氧化铝(Alumina)基板就是一个常见激光器切割成功的应用案例。 然而将激光器使用于8”以下硅芯片的切割案例并不多见, 虽然作者亦曾于1999 Productronica Munchen实地参观过瑞士Synova公司所开发以亚格激光器为核心的硅芯片切割机。至于学术界对于激光器切割硅材质的研究则至少可以追溯到1969年L. M. Lumley发表于Ceramic Bulletin的文章”Controlled Separation of Brittle Materials Using a Laser”。 G?t<4MTv
|*w}bT(PfR
将激光器切割机使用于硅芯片切割工艺, 除了激光器本身巨大的热量问题需要克服之外,其实不论就售价、工艺良率、与产能而论, 激光器切割机均未较以钻石刀具(Diamond Blade)为基础的芯片切割机(Wafer Saw)优越, 所以8”硅芯片的切割工艺目前仍以芯片切割机为主流, 不过由于电子产品轻薄化的趋势与硅芯片延伸至300 mm, 使得芯片切割机的地位受到激光器切割机极大的挑战, 请参考以下说明。 x?unE@?\S
MI,b`pQ
2. 芯片切割的未来 N7b+GqYpF>
NLz[F`I
以钻石刀具来切割芯片将使得芯片的背面承受拉应力(Tension Stress), 因此, 当厚度变薄时会造成更严重的芯片背崩(Back Side Chipping or Cracking), 而Flip Chip的封装方式更加突显芯片背崩的品质问题。 1oSrhUTy
{"([p L
虽然降低切割速度或者采取阶段切割(Step Cutting)的方式都可以改善芯片背崩的品质问题, 不过二者皆需付出降低产能的代价。日本DISCO公司研发出所谓DBG(Dicing Before Grinding)的工艺来解决此问题, 不过除了Dicing(切割)与Grinding(背磨)之外, 此DBG工艺尚包括繁复的Tape(上胶带)与De-tape(去胶带)程序,所以此构想至今并未广为业界接受。 [1\k'5rp
0L5n<<