传统的光交换在交换过程中存在光变电、电变光的相互转换,而且它们的交换容量都要受到电子器件工作速度的限制,使得整个光通信系统的带宽受到限制。直接光交换可省去光/电、电/光的交换过程,充分利用光通信的宽带特性。因此,光交换被认为是未来宽带通信网最具潜力的新一代交换技术。对光交换的探索始于上世纪70年代,80年代中期发展比较迅速。 '&/ 35d9|*
m(MPVY<X
和电交换技术类似,光交换技术按交换方式可分为电路交换和包交换。电路交换又含有空分(SD)、时分(TD)、波分/频分(WD/FD)等方式;包交换则有ATM光交换等方式。其原理、结构特点和研究进展状况如下。 Co[fq3iX#
(gN[<QL
1、空分光交换 /d; C)%$
fZ8%Z
空分光交换是由开关矩阵实现的,开关矩阵节点可由机械、电或光进行控制,按要求建立物理通道,使输入端任一信道与输出端任一信道相连,完成信息的交换。各种机械、电或光控制的相关器件均可构成空分光交换。构成光矩阵的开关有铌酸锂定向耦合器、微机电系统MEMS等。 lS"g[O+
1>hY!nG h
2、时分光交换
4C@ .X[r
V1y"
时分光交换系统采用光器件或光电器件作为时隙交换器,通过光读写门对光存储器的受控有序读写操作完成交换动作。因为时分光交换系统能与光传输系统很好配合构成全光网,所以时分光交换技术的研究开发进展很快,其交换速率几乎每年提高一倍,目前已研制出几种时分光交换系统。上世纪80年代中期成功地实现了256Mbps(4路64Mbps)彩色图像编码信号的光时分交换系统。它采用1×4铌酸锂定向耦合器矩阵开关作选通器,双稳态激光二极管作存储器(开关速度1Gbps),组成单级交换模块。上世纪90年代初又推出了512Mbps试验系统。实现光时分交换系统的关键是开发高速光逻辑器件,即光的读写器件和存储器件。 6*yt^[W
g<C_3ap/
3、波分/频分光交换 O ?`=<W/R
/{Ff)<Q.Z
波分交换即信号通过不同的波长,选择不同的网络通路来实现,由波长开关进行交换。波分光交换网络由波长复用器/去复用器、波长选择空间开关和波长互换器(波长开关)组成。 Yq~$Q4
anDwv
}
目前已研制成波分复用数在10左右的波分光交换实验系统。最近开发出一种太比级光波分交换系统,它采用的波分复用数为128,最大终端数达2048,复用级相当于1.2Tbps的交换吞吐量。 4n6EkTa
#p'Xq
}]
4、ATM光交换 !6y<