0.引言 X#T|.mCdC
JA{kifu0+
在固体激光技术及其相关领域的发展中,固体激光工作物质的开发是研究基础和先导,对于产生高性能的激光振荡具有决定性的意义。探索优秀的激光材料并应用于研发新型激光器件始终是激光研究的发展方向。可以说“一代材料,一代技术”。近年来迅速发展的新型陶瓷是继单晶、玻璃之后又一值得瞩目的激光材料。 ,%Z&*/*Oh
X(Af`KOg[
在探索固体激光材料的过程中,人们较早的在单晶或者玻璃基质中实现了光学泵浦的激光作用并广泛的运用到军事、工业、科研和生活中。虽然早在上世纪六十年代,材料研究者从理论上论证了各向同性的光学陶瓷能够产生激光作用,但是,由于陶瓷材料是多晶体,其颗粒边界、气孔率、成分梯度及晶格的不完整性所引起的内部散射损耗过大难以实现有效的激光输出,此后数十年来激光陶瓷的研究一直未有突破性进展。直到1995年,Ikesue等研究者用固相反应结合真空烧结的方法获得了散射损耗低达0.009cm-1的Nd3+:YAG透明陶瓷,并从实验上验证了世界上第一台LD泵浦固体陶瓷激光器,斜率效率达到28%[1]。1999年,日本Konoshima化学有限公司采用纳米技术制备出吸收、发射光谱以及荧光寿命与单晶基本一致的多晶Nd:YAG陶瓷【2,3】。透明陶瓷光学品质的突破性提高,引起了国际社会的广泛关注,显示出光明的发展前景。 48,*sTRq
{#+K+!SvDX
随着制备工艺的突破,多晶纳米陶瓷作为激光增益介质不仅具有与单晶相比拟的光学质量、物理化学性能和光谱、激光特性,而且具有显著的制备优势: fKEDe>B5
(1)可制备大尺寸块体,且形状容易控制。 +m
J G:n
(2)可掺杂浓度高、光学均匀性好。 JRBz/ j
(3)烧结温度相对较低,制备周期短,生产成本低,能够大规模生产。 vgc~%k62c
8/2Wq~&
透明陶瓷同玻璃基质相比,具有如下材料优点: y:\<FLR}j
(1)热导率高,是玻璃材料的数倍,有利于降低热效应; dZ"}wKbO
(2)陶瓷的熔点远高于玻璃的软化点,能够承受更高的辐射功率; u"5/QB{
(3)陶瓷激光器输出激光的单色性比玻璃激光器好; #U0| j?!D
基于以上优点,各国研究者对新型激光陶瓷和陶瓷激光器件的研究方兴未艾。 e|C2/U-
)T '?"guh`
从激光陶瓷的制备来看,目前商业化激光陶瓷已经出现,而且其气孔率密度、均匀性和内部散射损耗等性能已经赶上或者优于同种化学组分的单晶商品。不仅如此,陶瓷材料的掺杂种类(多种激活离子和基质)及掺杂形态也大大丰富,复合结构和多功能材料层出不穷。这些优点给予了高性能固体激光器前所未有的高性/价比和能够满足各种应用要求的灵活设计优势,使得长期以来光学工程师希望按照特定激光性能要求来进行材料分子设计以获取合适激光材料的梦想即将成为现实。透明激光陶瓷有望成为新的优秀激光材料引领未来固体激光工程发展的革新性飞跃! X%-"b`
>CG;df<~
1.陶瓷激光器发展 {31X
/7B3z}rd
激光陶瓷的迅猛发展极大的推动了陶瓷激光器的研制发展。新型陶瓷材料不仅推动传统的固体激光器向更高、更快、更强发展,而且各种新型陶瓷材料激光器(如低温烧结高熔点铼系倍半氧化物Re2O3: Re=Y, Lu, Sc)和一体化微片复合陶瓷激光器(Nd,Cr共掺YAG自调Q陶瓷;Nd:YAG陶瓷&KNbO3晶体复合蓝光激光器;Yb,Er共掺人眼安全激光器等)不断出现。 1f3g5y'z5
zk }SEt-
1.1高效率陶瓷激光器 7/&t