-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-01-28
- 在线时间1922小时
-
-
访问TA的空间加好友用道具
|
摘要 &u=FLp5 在本应用案例中,通过合理的初始结构设计并结合后续优化,我们设计了一种金属-介质高反膜,能够在可见光和近红外都提高都具有良好的反射效果,满足了天文观测要求。 GUN<ZOYb= 应用场景 +#B%Y K|LR 在天文观测中,由于需要观测早期星系和深空图像,所以工作波段要求较宽,需要覆盖可见光和近红外(400~1100nm)。本案例中通过优化初始结构的层厚度,目标是在工作波段平均反射率>93%。 &OzJ^G\o 设计结果 6@F Z,e 优化后的结果如上所示,右图展示了最终的光谱数据,工作波段的平均反射率为93.545%,满足设计要求。 }f-rWe{gs> 设计流程 /=r&9P@Ay< 为了满足深空图像和早期星系探测等不同的科学目标, 天文望远镜的工作波段需要覆盖可见光+近红外波段(400-1100nm)。由于天文望远镜通常的镜片尺寸较大,所以一般都是采用简单低风险的金属+介质反射膜。Al是紫外到红外区都有比较高的材料,所以铝膜最常见的一种作为主镜的反射镜。但由于单层铝膜在反射率有限且在空气中很容易氧化,常用的方法是在金属膜层的表面加镀〖"(HL)" 〗^S 膜堆。
%;W8; 选择的高低折射率材料分别为 Ce"O" _2 和MgF_2,因为这两个材料都均具有较低的热膨胀系数和良好的化学稳定性,且两种材料的折射率差距较大,高低折射率交替时具有较宽的反射带宽。 ;( 2uQ#Y 使用公式工具构建了上述膜系作为基础结构,右图展示了其在400-1100 nm内0°入射时的光谱。可以看出此时平均反射率没有达标。接下来需要借助优化工具进一步优化介质层 R2J3R5S=[ 关于公式工具的更多信息: Tutorial: Formula Tool ~Q%QA._R? 使用Nelder-Mead算法优化非金属层的各层厚度(金属膜层膜厚大于100nm,光谱特性不变,因此不优化金属膜层厚度),目标是在 400~1100nm波段内反射率尽可能大 "R9kF- 关于优化的更多信息: Tutorial: Optimization Workflow ,RT\&Ze5 优化后的结果如上所示,工作波段的平均反射率为93.545%,满足设计要求。 MPL2#YU/a
|