oG
c9
6B%
yh{U!hG
应用 R,8Tt!n
@#yl_r% •骨干网聚合取代N * 10 G LAG。
rLA^ &P: •数据中心网络聚合和企业计算。
S7j U:CLJ •在100 G以太网中的传输和以太网融合。
oWq]\yT<` xW58B 概述 #v*3-) 8 偏振复用和正交相移键控(PM-QPSK或DP-QPSK)的组合正在成为达到100 Gbps或更高比特率的最有前景的解决方案之一。在接收器端,数字信号处理(DSP)的使用导致相对于传统实现的显著部署改进。本案例介绍了100 Gbps DP-QPSK传输
系统的实际设计,该系统使用数字信号处理的相干检测进行失真补偿。
ON"p^o>/_? 4GS:kfti 100 Gbps DP-QPSK布局 {FR+a**
Uurpho_~
Lm+E? Ca Z<'iT%6+r 优点 iYGa4@/uM • 通过全面的设计环境显著降低产品开发成本并提高生产力,从而帮助规划,测试和
模拟现代光网络传输层中的光链路。
/!U(/ • 用户能够分析
电子均衡的不同算法,(例如Gram-Schmidt正交化程序(GSOP),椭圆校正方法(EC),横向数字滤波器)
0O(V y y • 与流行的设计工具接口。
BwVq:)P/R B5[As8Sa
cbW=kQc_ 7A{Z1[7 • 新的BER测试装置可以模拟数百万比特直接误差计数。
{"O-/*
f+( • FEC
Eo@rrM: • 多
参数扫描使系统设计人员能够研究与感兴趣的参数相关的权衡,并为部署选择最佳设计。
n!U1cB{ • 探索100G的不同调制格式:DQPSK,相干DP-QPSK,相干OFDM和相干M-QAM。
AR c &_' evZ8 模拟说明 c_Iq!MH 100 Gbps DP-QPSK系统可分为五个主要部分:DP-QPSK发送器,传输链路,相干接收器,数字信号处理和检测和解码(后面是直接误差计数)。信号由光学DP-QPSK发射器产生,然后通过
光纤环路传播,在光纤中会发生色散和偏振效应。然后它通过相干接收器进入DSP进行失真补偿。使用简单的横向数字滤波器补偿光纤色散,并且通过恒模算法(CMA)实现自适应偏振解复用。然后使用改进的Viterbi-Viterbi相位估计算法(在两个极化上共同工作)来补偿发射器和本地振荡器(LO)之间的相位和频率失配。数字信号处理完成后,信号被发送到检测器和解码器,然后发送到BER测试装置进行直接误差计数。
-i]2b 下面是发射机后100 Gbps DP-QPSK信号的
光谱图像,以及相干DP-QPSK接收机后获得的RF频谱。
f'Rq#b@ lYU?j|n
XII',& :0p$r
pJP DSP模块的内部
结构如下所示:
%
@!hf! pv^: G;
;8cTy8 zL3I!& z2 DSP之前和之后的电子星座图(极化X)如下:
10tTV3`IM [_*?~
dwb ^z+ Q)5V3Q]@^ 用于数字信号处理的算法通过
Matlab组件实现。通过将Matlab组件设置为调试模式,每个步骤(CD补偿,偏振解复用和载波相位估计)后生成的电子星座图如下所示:
oAvLSFn ^~s!*T)\
&&C'\,ZK5 [buLo*C4: