工艺特点及其影响因素
~3 z10IG "V cG3. l、激光的投入能量密度。调整激光照射能量密度的方法主要有:
Eyu?T A、调整激光输出能量(调整激发电压)
1)M>vdrP B、调整光斑大小(调节出射焦距)
eESJk14 C、改变光斑中的能量分布(改变光纤类型:峰形输出型——GI型光纤、梯形输出型―SI型光纤)
P
A9
]L D、改变出射脉冲的宽度和波形
a4! AvG n2H2G_-L[ 2、材料反射率
{N$G|bm]u< wLC|mByq 大多数金属在激光开始照射时,会将大部分激光能量反射掉,所以,焊接过程开始的瞬间,要相应提高光束的功率。采用脉冲激光缝悍二艺时,可以通过接入引弧板来保证整个焊接段的品质一致性。当金属表面开始熔化或汽化后,其反射率迅速降低。
PF-
sb&q -K)P|'-?m 影响材料对激光束吸收的主要因素
N*My2t_+E |nj%G< 1、温度
C@L:m1fz l+Tw#2s$ 室温时金属材料两激光的吸收率一般在20℃以下;当金属温度达到烙点产生熔融和气化后吸收率上升到40~50%;当接近沸点时吸收率可高达90%。
"sRR:wzQu ( UV8M\ 材料的直流电阻率
RxkcQL/Le 7@Qz 材料对激光的吸收率与材料的直流电阻率的平方根成正比、与激光彼长的平方根成反比关系。
fF8g3|p: eW+z@\d9Gz 2、激光束的入射角
u U>Bun
Ydu=Jg5u7 入射角越大,吸收率越小。当激光垂直于金属表面照射时,金属对激光的吸收率最大。但通常为了保护激光出射镜头,需要维持一定的入射角。
` oYrW0Vm nMXSpX>!| 村料的表面状态
6?ylSQ]1 pUr.<yc&u 为了低反射率,可在金属表面涂上薄薄一层全属粉,但两者必须是能够形成合金的。如饭、金、银可覆盖薄锐层,此时在同样熔深的情况下,焊接所需的能量大约为原来铜、金、银所需的四分一。
u*&wMR>Crf C
sn"sf 3、聚焦性和离焦量
69,;= t1.5hsp 品质优良的YAG激光焊接装置,其聚焦性(光斑大小)是通过装置本身的光路同轴精度、输出光纤和出射头的成像比等来保证。以激光出射焦点正好落在工作上面时的位置为零。离焦量是指焦点离开这个零点的距离量。焦点位置超过零点位置时叫负离焦(焦点深入到工件内部),其距离值为负离焦量。反之,焦点不到零点的距离数值为正离焦量。要获得较大的熔深,可将焦点位置选择在工件内部某一位置上,即采用负离焦量进行焊接。
)fR'1_ >9|/sH@W 4、焊接的穿入深度
@QMMtfeLj y:Qo:Z~ 脉冲激光焊接时,主要是以传热熔化方式进行的。激光束本身对金属的直接穿入深度是有限的,其主要取决于材料的导温系数(导温系数大的则穿入深度大),而不是激光器的功率大小。
Vo"\nj 内部构造及电气示意图
#f~#38_ :NO'[iE