花了好几天时间,把CPC的大部分知识弄懂了。花了两个半天时间把这些知识整理出来,希望对大家有帮助。有些概念还不是很清晰,文中难免有错漏,请大家多多指教。
%7 bd}sJ# w}>%E6UY 转载请注明作者:shogun@
www.opticsky.cn,E-mail:
charmingglass008@163.com wW@e#: \D? '.Wo% 同时,搭贴求两本书的电子版:《Nonimaging Optics》、《High Collection Nonimaging Optics》
|(3y09 以下是正文:
$u!(F]^ 2!J#XzR0W fd&Fn=! CPC学习笔记 sv%X8 7Ed0BJTa qjP~F shogun@
www.opticsky.cn,E-mail:
charmingglass008@163.com {Ya$Q#l +Y sGH~jX 9j>2C §1.1什么是CPC(Compound Parabolic Concetrator)
&-yRa45? CPC全名为复合抛物面聚光器。CPC及其多种变型广泛应用于太阳能系统中。CPC将光能量采集到焦平面,焦平面的吸收体吸收光能并转化为可储存的热能、电能等。
bE
!SW2:M Fvl\. §1.2抛物线方程(Parabolic Function)
z4:!*:.Asu j%Au0k
JX=rL6Y@:; 如图1.1,抛物线的极坐标方程为:
f=F:Af! ρ=2f/(1+cosθ (1.1)
.n]"vpWm[ 则抛物面的半口径R为:
*OG<+#*\_? R=ρsinθ (1.2)
V/ G1C^'/ 对于一束平行光,经理想抛物面反射后总能汇集到焦点。若将光源置于焦点位置,根据光路可逆性,从抛物面出来的是比较完美的平行光。抛物面的这个特性使它被广泛应用在各种照明系统中。
MeEa| . i<^X z 仔细分析,我们可以发现:
u?Ffqt9' AC+CF=BD+DF (1.3)
6VGY4j}:( A、B为平行光束与平行光束垂直面m的交点。
cAW}a 事实上,抛物线即是从平行光出发点到焦点光程相等点的轨迹的集合。后文的string method将用到这一概念。
.5
.(S^u 在图1.1中,假设f=8mm,θ=135°,则R=ρsinθ=38.6mm。
`MOw\Z).. §1.3边缘光线原理(Edge-Ray Principle)
aj&L
Z DD6 对聚光器经常采用边缘光线法进行分析。边缘光线即是以最大入射角入射于聚光器边缘,并被反射器反射一次后出射在接收器(吸收面)边缘的光线。
t{]Ew4Y4%O §1.3.1聚光比(Concentration Ratio)
7 m{lOR 对于一个聚光器,我们定义聚光比为:
3CoZ2 C=Aentry/Aexit (1.4)
]->"4,} Aentry为入射光束的截面积,Aexit 为出射光束的截面积;C越大,聚光效果越好。读者可以自行计算图1.2中聚光器的C值。(见式1.5)
*4U_MM#rX §1.3.2接收角(Acceptance Angle)
R5uG.Oj-2 如图1.2,接收角定义为边缘光线被反射器反射一次后出射在接收器边缘时(仍在出射面内)入射光线与垂直方向的夹角θmax。
6nW)2LV /4an@5.\C
, _e[P §1.3.3拉线法(String Method)分析抛物线轨迹
PAYw:/(P 如图1.2,将一根圆杆(rod)与水平面成θmax角放置于聚光器入射端。圆杆上有一个圆环,圆环上系有细线(string),细线的一端系于焦点d。将细线拉直,并保证垂直于圆杆,圆环从A走到C,细线另一头a走过的轨迹即为抛物线。显而易见,Aa+ad=Bb+bd=Cc+cd。
]/=R ABi oe*1jR_J`[ 8Sr' 图1.2是拉线法的最简单示意。在Solar Energy System中,不同的吸收面(如Cylindrical Absorber)都可以用string method来显示反射面的轨迹。这种轨迹可能是渐开线与抛物线的结合。
duY?LJ @g 4Hj)Av<O( z{rV|vQ §1.4抛物面的倾斜(Tilt of Parabolic)
QoZV6 首先,CPC并非是通常的聚光器。从截面来看,两个反射面的焦点并不一定是同一点。也就是说,并非共焦系统,所以是非成像系统(Nonimaging System)。如图1.2,右面反射镜的焦点在d点。左面反射镜的焦点在c点。这就是“复合(compound)”的真正意思,是由两片反射镜组合在一起的。两片反射镜的光轴并不重合,但是它们有自己的对称轴Z。
%F 2h C
x 不同形态的CPC可由抛物线经旋转(tilt)得到。如图1.3,虚线1、2是未经旋转的抛物线(Original Parabolic),两者的光轴本来是水平的。反射镜1的光轴Axis1绕自己的焦点f1旋转了20°,反射镜1也跟着旋转了20°,到1’的位置。抛物线2也经过的同样的旋转,只是方向相反。
7?Wte&C];p
Z}+}X| dR S:S_ 经过旋转,可以获得我们需要的接收角。大于接收角的光线将会被系统反射出去,无法到达吸收面(exit aperture)(见图1.9)。
_i05'_ 事实上,由式(1.5)可知,减少接收角也就增大了集光率C:
^9Pr`\ w|9 >4 C=1/sinθmax (1.5)
1+FVM\<& 6gV*G 下面我们对旋转前后的参数进行一些计算。
Y2r}W3F= >C|pY6
a{nR:zPE ?\V#^q- 如图1.4,简单地,可以得到:
U,=f}; 3`^@ymY R=2fl/(1-cosΦ (1.6)
+S4n416K r=Rsin(Φ-θmax)-a’ (1.7)
i0=U6S:# z=Rcos(Φ-θmax) (1.8)
&<F9Z2^ fl=a’(1+sinθmax) (1.9)
V`I4"}M1 #Z%"
?RJ 在tracepro中,根据需要,Axis tilt可任意选择,只要保证开口口径(entry aperture)不为0即可。对于规范的聚光器(textbook concentrator),Axis tilt即为接收角θmax。Lateral focal shift,顾名思义就是焦点(focal point)在Lateral方向(图1.5的Y方向)上的移动量(shift)。若Lateral focal shift=0,焦点未发生移动,仍在焦平面与中心轴的交点。对于规范的聚光器(textbook concentrator),Lateral focal shift即为a',即保证满足边缘光线原理。
F)^0R%{C E-z5mX.2 ~>CvZ7K hne@I1 §1.5tracepro中CPC的建立与模拟
;,f\Wf"BW 见图1.5,未经旋转的CPC即为conical parabolic。图1.5中front length可由图1.1中得到,front length= |ρcosθ|=R=38.6mm。此CPC的出光面(exit aperture)为焦平面,所以back length为0。
B>53+GyMV
Z 1HH0{q-A 旋转后的CPC如图1.6:
QLd*f[n
=
lo.LFV 对旋转前后的CPC进行模拟:
v;]rFc#Px[
;U* /\+*h
f^F;`;z rwP#Yj[BK+ -<#)
]um 若θ>θmax,光束将被系统反射出去。如图1.9:
7gC?<;\0 [}L~zn6>?a 
[ 此贴被shogun在2007-04-23 16:45重新编辑 ]