拉曼光谱是基于自发或受激拉曼散射(一种非弹性光散射)的一大类光谱方法。它是以钱德拉舍卡拉·文卡塔·拉曼爵士的名字命名的,他首先用实验证明了拉曼散射。 dJ(<zz+;b 拉曼光谱用于许多不同的目的(参见下面的应用部分),它的变体取决于不同的操作原理。它们还涉及到完全不同的仪器,例如所使用的激光器类型。 MUW&m2 \=&F\EV 自发拉曼散射
I83 _x|$FZ `UD,ne 工作原理 kxH`
c 在大多数情况下,利用由单个光源引起的自发拉曼散射。所研究的样品受到光带宽足够窄的强光束(通常是连续波激光束)的照射。散射光主要由瑞利散射产生,但也有一小部分由拉曼散射产生。 `8lS)R! 瑞利散射产生的光具有不变的光频率(除了可能的多普勒效应,该效应通常很弱),而拉曼散射产生的散射成分具有显着改变的光频率和波长。必须使用合适的拉曼光谱仪来分析这些频移分量。 H3>49;` 上述光频率的变化是由光与所研究介质的非弹性相互作用引起的。 evvv&$& 例如,激光可以击中气体中最初处于基态的分子。 PJF1+I.%c# 当发生自发拉曼散射时,分子被激发到更高的振动/旋转状态,并且散射光子的能量被该激发能量降低。还可能发生分子最初处于激发态并被激光束去激发,导致反斯托克斯位移,即导致散射光的光学频率增加。 K41Gn 通过测量光谱因此,人们可以获得有关所研究样品中材料的激发态的信息。光谱内通常有明确定义的“拉曼线”。 K0fuN)C 例如对应于材料的某些振动模式的能量。 {2.zzev' 这些线条的图案通常会形成某些物质的清晰“光谱指纹”。所使用的拉曼光谱仪可能基于与灵敏光电探测器相结合的可调谐单色仪。使用其他类型的光谱仪(如包含光电探测器阵列或基于傅里叶变换光谱仪)可以实现更快的数据采集。 NCa3")k 通常研究的激发是频率为 1THz 至 100THz 量级的分子振动或晶格声子。在大多数情况下,所使用的光频率要高得多(数百太赫兹)。 /<VR-yr 获得的拉曼光谱通常不在水平轴上显示绝对光频率,而是以cm -1为单位显示波数差(理解为反波长)。这些差异与光频率或光子能量的差异成正比。例如,1cm -1的差对应于约30GHz的频率差。 6Z#$(oC %7hf6Xo=
],-(YPiAD 图 1:熔融石英的拉曼光谱。与提供非常尖锐的拉曼线的单分子相比,由于存在大量不同的声子模式,因此获得了相当广泛的分布。
cH:9@> '$a
x8!uI)#tS 分子的振动模式通常主要与某些化学键的振动相关,并且具有这些化学键特有的振动频率。例如,CH键通常对应于2800至3200cm -1左右的波数,而CO双键大约为1700cm -1。由于存在大量不同的声子模式,固体的声子光谱(参见图1)表现出更广泛的特征。 ;DgQ8"f 拉曼光谱可以显示光子能量正变化和负变化的区域,即Stokes线和反Stokes线的贡献。在其他情况下,只显示Stokes区域。 po@Agyg5 Y !%2vOt 与吸收光谱法的比较 e'|IRhr 物质的激发态也可以用激光吸收光谱来研究。与此相比,拉曼光谱在某些方面有所不同: 1c|{<dFm 所使用的光子能量通常远高于与所研究的激发相关的能量。它通常不适应介质的电子跃迁(共振拉曼光谱除外),因此探测光不会经历大量吸收,并且很少会产生荧光。(该效应的说明通常涉及某些“虚拟能态”,但它们并不是所研究物质的真实激发态,而只是想象的状态。) 'Px}#f0IR 因此,人们通常可以使用具有恒定光频率的激光源而不是可调谐激光器。通常,人们使用可见光或紫外光谱区或红外区的激光。为了使吸收光谱能够作用于类似的激发特征,通常需要一个可调谐的中红外激光源。此外,一种光电探测器可用于拉曼光谱,其工作波长要短得多。这是有利的,因为长波长红外探测器往往提供相当有限的信噪比和/或需要低温操作。还可能有利的是,所使用的光可以容易地传输,例如通过玻璃比色皿,而红外吸收光谱需要更特殊的光学窗口。 puAjAvIax 此外,例如在生物和医学研究拉曼光谱学的背景下,水几乎不影响测量是有利的。它仅表现出微弱的拉曼散射,而红外吸收光谱会受到水中红外光吸收的严重影响。 Mc~L%5 $1y8X K7r 拉曼线的强度 -&E