-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-06-20
- 在线时间1790小时
-
-
访问TA的空间加好友用道具
|
1r.2bL*~jw rusM]Z 应用 2Q(ZW@0 %2D'NZS •骨干网聚合取代N * 10 G LAG。 o92BGqA>& •数据中心网络聚合和企业计算。 >clVV6B •在100 G以太网中的传输和以太网融合。 W^[QEmyn GBg 概述 a0JMLLa [I 偏振复用和正交相移键控(PM-QPSK或DP-QPSK)的组合正在成为达到100 Gbps或更高比特率的最有前景的解决方案之一。在接收器端,数字信号处理(DSP)的使用导致相对于传统实现的显著部署改进。本案例介绍了100 Gbps DP-QPSK传输系统的实际设计,该系统使用数字信号处理的相干检测进行失真补偿。 K($+ILZ 9({ 9 r[U 100 Gbps DP-QPSK布局 d<ES `xv Uq\
]S?G]/k} R3_;!/1 优点 [W[awGf • 通过全面的设计环境显著降低产品开发成本并提高生产力,从而帮助规划,测试和模拟现代光网络传输层中的光链路。 S]fkA6v
• 用户能够分析电子均衡的不同算法,(例如Gram-Schmidt正交化程序(GSOP),椭圆校正方法(EC),横向数字滤波器) N!?~Dgw • 与流行的设计工具接口。 0nI*9 $ta"Ug.z
M^l%*QF[,q A`vRUl,c= • 新的BER测试装置可以模拟数百万比特直接误差计数。 w(+L&IBC • FEC ixM#|Yq • 多参数扫描使系统设计人员能够研究与感兴趣的参数相关的权衡,并为部署选择最佳设计。 *R4=4e2#S • 探索100G的不同调制格式:DQPSK,相干DP-QPSK,相干OFDM和相干M-QAM。 ScInOPb'K 2HE<WI^#h 模拟说明 4s>L]!
W$8 100 Gbps DP-QPSK系统可分为五个主要部分:DP-QPSK发送器,传输链路,相干接收器,数字信号处理和检测和解码(后面是直接误差计数)。信号由光学DP-QPSK发射器产生,然后通过光纤环路传播,在光纤中会发生色散和偏振效应。然后它通过相干接收器进入DSP进行失真补偿。使用简单的横向数字滤波器补偿光纤色散,并且通过恒模算法(CMA)实现自适应偏振解复用。然后使用改进的Viterbi-Viterbi相位估计算法(在两个极化上共同工作)来补偿发射器和本地振荡器(LO)之间的相位和频率失配。数字信号处理完成后,信号被发送到检测器和解码器,然后发送到BER测试装置进行直接误差计数。 JT6Be8
下面是发射机后100 Gbps DP-QPSK信号的光谱图像,以及相干DP-QPSK接收机后获得的RF频谱。 &?@U_emLi 4M>]0%3.D
kW%wt1", DD7D&@As DSP模块的内部结构如下所示: d\A7}_r*x (NnE\2
U[yA`7Zs} s&WE' DSP之前和之后的电子星座图(极化X)如下: S9b=?? M) OHngpe4
{KTZSs $n t]3:vp5N] 用于数字信号处理的算法通过Matlab组件实现。通过将Matlab组件设置为调试模式,每个步骤(CD补偿,偏振解复用和载波相位估计)后生成的电子星座图如下所示: I)%bOK] g rQ,J
fWg3gRI XI ><;#
#cD$
DA
|