|
1、说明 9}d^ll& P_
b8_ydU 在本示例中,我们将展示使用 Lumerical STACK 求解器来设计抗反射圆偏振器,以减少 OLED 显示器的环境光反射。 *o=( w5
h<BTu7a`r \Oe8h#% d ?,wEfwp 2、综述 1(Lq9hs` Oc/ i' Acb %)Y @8SA^u0 OLED 显示器的底部金属电极可以用于增强光提取效率,然而它也会带来环境光反射的不利影响,导致显示器在室外使用时对比度降低。在本例中,演示了使用圆偏振器来最小化具有特定线偏振的光的反射[1]。圆偏振器的配置和工作原理如下所示: ZVCa0Km
Z%VgAV>> -Z:nImqzc 图 1 LT/*y= 为了简单起见,多层 OLED 结构由金属反射器表示。入射到线性偏振器上的光在传播通过半波片之后变成30°线偏振,然后在通过四分之一波片之后变成圆偏振。反射光最终将变得相对于线性偏振器的偏振正交偏振,因此被其阻挡。 ,WS{O6O7 Pm|S>r 反射光可以分解为两部分,如图1所示。R1表示空气/偏振器界面处的反射,R2与圆偏振器相关。在本例中我们将关注如何最小化R2,关于R1的最小化,请参阅原文。 Ntpw(E<$f
v&"sTcS| 为了分解R1和R2,一种方法是添加折射率为1.5的人工层,如下图所示。 +?0r%R%\ er>@- F7w QV=|'
S 图 2 %nj{eT 折射率1.5被选择为接近线性偏振器的折射率,使得圆形偏振器在有或没有人工层的情况下的总反射几乎相同。然后,我们将通过脚本命令将反射率从 STACK Solver(棕色箭头)转换为R2(蓝色箭头)。 }\EHZ &3YXDNm 偏振器和波片由各向异性材料制成,这意味着它们的折射率在不同方向上可能不同。通过旋转相应的介电常数张量,在 STACK Solver 中充分考虑了极化/慢轴的旋转。 #2qv"ntW Z7dV y8J 步骤1:初步测试 s&-dLkis{u .wcKG9u 本步骤的主要目的是确保仿真被正确设置,并验证圆偏振器在正入射时的抗反射性能。通过脚本可以绘制圆偏振片在正入射时的反射光谱,选择波片的厚度以使目标波长为0.55μm时的反射最小,图3中可以得到证实。反射光谱中的小波纹可以归因于多层膜的法布里-珀罗共振。 5g
phza Odbm"Y <+ckE2j 图 3 RG`eNRTQ% 步骤2:角度扫描 ^:o^g'Yab Yg]!`(db 在该步骤中,通过扫描入射角(θ和φ)来表征圆偏振器的反射特性,在几何光学工具(如 Ansys SPEOS)中根据视角进一步评估显示器的性能时很有用。脚本将通过旋转介电常数张量扫描入射角(phi),然后给出作为波长和角度(θ和phi)函数的反射率。 K1-y[pS]E <{k8 K6 >jm^MS= 图 4 $_
k:{? 通过查看 Visualizer 工具可以查看 R_ave 的极坐标图像,即 Rs 和 Rp 的平均值。我们可以发现,入射角θ越大反射越高,这意味着抗反射膜层在入射角越大时就会失效。 ajD/)9S #!]~E@;E 接下来,参考论文[1],我们研究了两种不同的各向异性薄膜: PkDh[i9Z| f,8PPJ:, gg
:{Xf*` 图 5 v`~egE17 Nz是各向异性材料薄膜的关键参数之一,其定义为(nx-Nz)/(nx-ny)。扫描了Nz从1.5到0.5的结果,从上图中,我们可以发现 Nz=0.5 可以在所有入射角下实现更好的抗反射性能,这与论文[1]一致。 ;)!);q+ -W)8Z. 参考文献: Vpf7~2[q% 1. Bong Choon Kim, Young Jin Lim, Je Hoon Song, Jun Hee Lee, Kwang-Un Jeong, Joong Hee Lee, Gi-Dong Lee, and Seung Hee Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22, A1725-A1730 (2014)
|