摘要:我们使用近似的物理光学模模拟了半径的测量。使用简单的几何光线模型替换复杂的物理光学模型,可以确定在测量中的偏差。 7-9;PkGG.A ~j,TVY 1. 简介 0v"&G<J
`:-J+<` 半径干涉测量通常通过简单的几何模型来模拟,即,来自物镜(或标准透镜)的光线形成锥形并且聚焦到一点[1]。当测试光学器件变小和/或需要更高的精度时,这个简单的几何模型就会产生问题并得到错误的半径测量值。需要完整的物理光学模型来捕获系统的衍射效应和像差。 >e8JK*Blz
s5Fr)q// ! 半径干涉测量的原理图如图1所示。菲索或泰曼格林干涉仪都可用于半径测量。在菲索干涉仪中,标准透镜用作聚焦元件、分束和参考表面。在泰曼格林干涉仪中,使用分束器将光分成参考反射镜和物镜,它可以将光束聚焦到测试部件。 %N~CvN@T
jgvh[@uB? 通过首先将部件放置在共焦位置,然后将部件移动到猫眼位置,并测量部件移动的距离,来测量测试部件的半径,该距离就是测试部件的半径。当泽尼克多项式[1]的离焦项为零时,共焦和猫眼位置重合。在视觉上,靶心环是空的。因为操作者不能将部件准确地放置在所需的位置,所以用于确定共焦和猫眼位置的最准确的方法是逐步通过这两个位置。当操作者以小步幅移动部件通过共焦和猫眼时,我们记录离焦和Z位置。然后,我们用一条线拟合离焦VS.Z位置。共焦和猫眼位置是Z位置轴上的截距。这种通过共焦和猫眼步进的方法可用于精确半径测量[2],我们在这里用于半径测量的模拟。 G79C {|c\
hZNEv| 图1:半径干涉测量几何模型原理图 o|287S|$
在NIST的精密半径干涉测量实验显示了标称24.466mm半径的Zerodur球的测量之间的差异。球体由坐标测量仪机械测量,同时在使用不同标准透镜的干涉仪上光学测量[2]。即使考虑了测量中的所有已知偏差和不确定性,这种在75nm至400nm范围内的差异仍然存在。对于这种差异的解释可能是光被假定遵循几何模型而不是更准确的物理光学模型,我们将在这里进行测试。 ^w6eWzI
o G_~3Kt 在光的几何模型中,当透镜的顶点与光的焦点(发生在距离聚焦元件一个焦距处)重合时,就会出现猫眼位置。然后,共焦位置距离猫眼位置一个半径。在非像差几何模型中,这发生在聚焦元件的波前的曲率等于测试部件的曲率时。 A"/aGCG0z
WhUa^ 半径测量的高斯模型表明了当使用几何模型而不是更复杂的高斯模型时,半径测量中存在误差[3]。对于较小的半径部分(<1mm),这个误差是在105部件的量级,而对于较大的部件(25mm),有接近108部件的误差。当考虑具有半径像差的高斯模型时,NIST [2]的研究者发现了6nm的误差(107部件)。这些像差是由标准透镜和系统中的其他光学元件的缺陷引起的。 i1/}XV
{>.>7{7 下一步是考虑物理光学模型。当然,焦点区域的分析计算是不可行的,因此需要近似。对于这种物理光学模型,我们使用来自Photon Engineering的软件包FRED [4]。 D$_8rHc\A q?VVYZXP 2. FRED模型 .{N\<