nMM:Tr 采用矢量有限元法
rF ?gKk d)>b/0CZ 应用 &ci;0P#Q 无源
光学 !#y_vz9 单
偏振传输
,F%2'W 偏振分束器
L`3;9rO
光子晶体光纤 <S ae:m4 偏振复用
)B*D\9\Z 色散控制
>;Ag7Ex Kj53"eW 综述 )WNw0cV}J> 设计了一种椭圆-纤芯-圆孔的多孔光纤(EC-CHFs)用于单偏振传输[1]。与传统的圆孔-纤芯-圆孔光纤(CC-CHF)一起,偏振分离器可以将入射CC-CHF的光耦合到支持x偏振模式或y偏振模式的EC-CHF,如下图所示。
Efp[K}Z^$ 9QP- ~V{$ 脚本系统生成 3QI. |;X i2P:I A|@ Talmc|h 优点:
>\?RYy,s$ 矢量有限元法(VFEM)在计算所有电磁场分量和近似几何方面具有极高的
精度,在光子晶体光纤中具有极其重要的意义
L}=DC =E 单轴完美匹配层(UPML)可用于查找泄漏模式。
ctOBV 三角形网格大小可用于精确近似电磁场和波导几何形状。
s3-TBhAv 针对具有一定对称性的模态,利用波导的对称性,可以缩小
仿真域。
N
T>[
2< 仿真描述
-xXdT$Xd 参考文献[1]的目的是设计一个具有偏振分束器。分束器由3个分离的多孔光纤组成。两个外孔光纤各自提供一个偏振,而中心
结构支持两个偏振。入射光将根据偏振,选择性地与任何一种外孔光纤耦合。
u']}Z%A9` 第一步是相位匹配每个结构的模式,以减少反射[1]。不同的结构必须具有某些共同的性质,如间距和包层原子。在每个结构的纤芯内都有大小和形状自由选择的孔。
DuQW?9^232 图1:各类型芯径的磁场分布。(a) yEC-CHF, (b) xEC-CHF, (c) CC-CHF 3ncN)E/@
XjXz#0nR 利用[1]中给出的特性,利用OptiMode计算三个不同核的模态指数,记录在表1中。这些结果与[1]中的结果非常一致,三个结构的模态指数都为1.31043。
7!F -.kG D wfw|h 表1单核结构的模态指数
V_3K((P6 (nu;o!mo9 图2::上层结构偶数模y偏振的磁场分布
xs6kr 
图3::上层结构偶模x极化的磁场分布 e_YTh^wU
_]v@Dq VP 把这三个纤芯放在一起形成一个上层结构,会生成一个支持两种偏振的波导结构,每一种偏振都有偶模和奇模解。偶模态解如图2和图3所示。耦合长度为:
QXu[<V M3G ecjR 其中neven和nodd是偶模和奇模的模态指数[1]。OptiMODE计算的耦合长度与参考文献[1]中表2的耦合长度进行了比较。
s^> >] kBU`Q{. 表2:偏振分束器的耦合长度
BgT(~8' 3a?|}zr4 通过仿真结果结果验证了OptiMode下的VFEM模态求解器可以准确地设计和仿真多孔光纤结构。