焊接技术作为一种传统的加工工艺经过上百年的发展,其应用领域涉及各行各业,焊接工艺方法近百种,在机械制造、航空航天、汽车、电子等行业已成为其它连接方式无法替代的工艺技术。尤其我国尚处于工业化过程中,钢铁的产量与消耗量均据世界首位,焊接技术依然起着非常重要的作用。纵观工业发达国家,钢铁强国同是焊接强国。 )b (+=
7D,nxx(`
热轧厚板产品主要应用于船舶制造、建筑结构、桥梁、锅炉和压力容器、输送管线、海洋平台、工程机械等重要场合,因此对产品的质量、焊接性要求亦越来越高。这种要求表现在以下几方面: H{yBDxw
9(qoME}>=
(1)最大限度地满足强度、韧性的指标要求; ZQym8iV/
(2)优异的服役性能,包括耐高、低温性能,抗疲劳性能,耐介质腐蚀性能等; zRmVV}b
(3)良好的焊接性能,包括广泛的焊接工艺适应性,高抗裂纹性,适用于大线能量焊接; AA)pV-
(4)符合各项法规规定; (^W
:f{
A W6B[
其中对焊接性的要求是最主要的内容之一,也是钢铁生产企业努力解决的关键技术。微合金化是钢铁产品改善和提高焊接性的核心。 -W.-m2:1
pGD-K41O]
冶炼和轧制技术的进步 :Cezk D&
WF*j^ %5
1 纯净钢技术 \D'mo
GFE3p
微合金化离不开冶金技术的整体进步,铁水预处理、转炉炼钢、钢包精炼、真空精炼等精炼技术的采用,使钢中S、P 等杂质元素的含量远低于以往的低碳钢和低合金钢。 ^7ID |uMr
$L( ,lB
以实绩为例,目前的纯净钢冶炼技术能够达到如下水平: o/
51RH
!SE
[P+S+N+O+H] ≤80ppm V1Ojr~iM
F'>yBDm*OM
P≤20ppm, S≤5ppm,N≤20ppm,O≤10ppm,H≤1.0ppm bf=\ED ^
H" A@Q.'
随着杂质元素的大幅度降低,结晶裂纹发生率随之大大减小,不再成为人们关注和研究的重点。 >TM{2b,(p
f3n^Sw&Q(Q
由于使用时结构设计的要求,钢板的板厚方向性能不容忽视。消除连铸坯中间偏析技术的日臻完善,大大降低偏析程度,改善了厚板的Z向性能。 Jw}&[
o\ ce|Dzt
2 控制轧制和控制冷却 IY6Qd4157
Cq7 uy
控制冷却技术的发展推动了轧制技术的进步,使控制轧制和控制冷却有效结合,结合的结果使得钢种成分更加简单,钢板综合性能进一步提高。同时随着自动化控制技术在轧钢应用中的不断成熟,有条件生产高品质、高精度的产品。微合金化技术结合控轧控冷,在受控状态下实现形变热处理,具有形变强化、析出强化和相变强化的综合作用,可获得比合金化法、正火处理及调质处理,更好的塑性、低温韧性、高的强度,更重要是由于碳当量Ceq 和裂纹敏感指数Pcm的降低,焊接性能大大提高,逐渐由可焊向易焊方向发展。 3?<A]"X.
A@?-"=h}
目前热轧厚钢板制造被广泛采用的控制轧制(TM)有正火轧制,控制轧制(又称CR,分为两阶段轧制和三阶段轧制);控制冷却工艺有加速冷却(ACC)和直接淬火(DQ);控制轧制和控制冷却工艺结合形成TMCP工艺。 rN7JJHV
'AWWdz
日本已采用TMCP 工艺生产出屈服强度570MPa 的结构钢,用于桥梁、压力容器和管线,并确保75mm 钢板焊接无预热、无弧坑裂纹。同时用相同工艺正开发屈服强度690MPa 的结构钢。 BMQ4i&kF|
)(yaX
新型微合金钢焊接的优势 :-U&_%#w
#@w/S:KbJt
采用TMCP工艺技术,国外已开发出多种高强度焊接结构钢。较为典型的钢种有: qhG2j;
}+MA*v[06
(1)新日铁研制生产的屈服强度420MPa的钢(符合API 2WGr.60),厚度40~70mm,焊后热处理Akv(-40℃)280J,且FATT 达到-90℃~-100℃、Akv150J,用于海洋平台;接着又开发了氧化物弥散分布的屈服强度500MPa 的海洋平台用钢。 O(-6Zqk8Q
b@=H$"
(2)川崎制铁和神户制钢开发了屈服强度570MPa钢,焊接热输入可达200KJ/cm(为传统钢种的4 倍),-20℃下使用,焊接不预热,无弧坑裂纹、无硬化现象,厚度可达75mm,与SM570 相比具有明显的优势,用于桥梁建设,且无需涂装。 z79oj\&[
tUZfQ
(3)新日铁采用氧化钛和氮化钛弥散分布技术(简称HTUFF-Super HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles)开发抗震建筑用钢490MPa、520MPa、590MPa系列,最大厚度100mm,焊接热输入可达1000KJ/cm,局部脆化减弱。 pO fw *lD
+:jv )4^O
(4) 芬兰采用TMCP + ACC 技术, 生产NVE360、NVE400、NVE500,用于破冰船,、NVE400、NVE500,用于破冰船,NVE500 的Ceq仅为0.40%。 +A1*e+/b\
K$GQc"
从以上实例可以发现,现代轧制技术的发展带来的是钢铁企业的低成本(合金添加量少),更主要的是为钢铁生产的下游用户提供更为直接的效益。 /qwY/^
[>_zV.X
1 低裂纹敏感性 _qk&W_u
iD%a;]
影响钢种焊接裂纹敏感性的因素来自淬硬组织、扩散氢、拘束度,碳当量Ceq 和裂纹敏感指数Pcm 决定了淬硬倾向。而微合金化技术和控制轧制技术的运用,使钢种的成分设计简单,合金总量减少,特别是碳含量的降低(超低碳),高温和中温转变组织比例提高,加之析出相的影响,形核增加,晶粒细化。形成针状铁素体和低碳贝氏体为主的组织,因此达到高的强度与韧性。成分的简化为提高钢种的抗冷裂性提供了保证。 DWx;cP8[
IO7gq+
2 高热影响区韧性 (4RtoYWW
uit.r^8l
焊接热影响区的韧性是新型微合金钢的最主要的问题,此问题是伴随着高效焊接技术而来。为提高焊接效率,埋弧自动焊、气电焊(单丝、多丝、熔嘴)、电渣焊(KES、SES)广泛应用,随焊接线能量的增加对焊接热影响区韧性的损伤越来越明显。焊接研究者和钢种设计者不得不寻找能有效阻止HAZ晶粒粗化的技术。 q9VBK(,X
G#f3
WpD
各国冶金工作者经过多年的研究,首先发现了氮化钛的有效作用,并付诸实施,取得了良好的效果。更为令人感兴趣的是日本的研究人员发现氧化钛比氮化钛具有更强的高温稳定性,对钉扎晶界、阻止晶粒长大更为有效(即HTUFF 技术),使钢种承受的焊接线能量大大提高。 7rbw_m`12-
K?e16;
焊接研究面临的问题 %dr*dA'
P0_Ymn=&