研究人员用磁芯损耗光谱学来确定有机分子的特性
如果可以可靠地预测材料的特性,那么为大量行业开发新产品的过程就可以被简化和加速。在发表在《先进智能系统》上的一项研究中,来自东京大学工业科学研究所的研究人员利用机器学习,用磁芯损耗光谱学来确定有机分子的特性。 光谱技术能量损失近边结构(ELNES)和X射线近边结构(XANES)被用来确定材料中电子的信息,并通过它确定原子。它们具有高灵敏度和高分辨率,已被用于研究从电子设备到药物输送系统的一系列材料。 然而,将光谱数据与材料的特性--如光学特性、电子传导性、密度和稳定性--联系起来仍然是不明确的。机器学习方法已被用于提取大型复杂数据集的信息。这种方法使用人工神经网络,它基于我们的大脑如何工作,不断学习以解决问题。尽管该小组之前使用ELNES/XANES光谱和ML来找出材料的信息,但他们发现的东西与材料本身的属性无关。因此,这些信息不能轻易转化为发展。 ![]() 现在,该团队已经使用ML来揭示隐藏在22155个有机分子的模拟ELNES/XANES光谱中的信息。“分子的ELNES/XANES光谱,或它们在这种情况下的 ‘描述符’,然后被输入系统,”主要作者Kakeru Kikumasa解释说。“这种描述符是可以在实验中直接测量的东西,因此可以以高灵敏度和分辨率来确定。这种方法对材料开发非常有利,因为它有可能揭示出某些材料特性产生的地点、时间和方式。” |