半导体术语含义(二)51) Densify密化 CVD沈积后由于所沈积的薄膜(Thin Film)的密度很低,故以高温步骤使薄膜中的分子重新结合以提高其密度,此种高温步骤即称为密化。密化通常以炉管在800℃以上的温度完成,但也可在RTP(Rapid Thermal Process) (快速升降温机台)完成。 52) 空乏型Depletion MOS: 操作性质与增强型MOS相反,它的通道不须要任何闸极的加压(Vg)便已存在,而必须在适当的Vg下才消失。 53) Deposition Rate 沉积速率 表示薄膜成长快慢的参数。一般单位Å/min 54) Depth of Well 井深 顾名思义即阱的深度。通过离子植入法植入杂质如磷离子或硼离子,然后通过Drive in将离子往下推所达到的深度。 55) Design Rule设计规范 由于半导体制程技术,系一门专业、精致又复杂的技术,容易受到不同制造设备制程方法( RECIPE )的影响,故在考虑各项产品如何从事制造技术完善、成功地制造出来时,须有一套规范来做有关技术上的规定,此即"Design Rule",其系依照各种不同产品的需求、规格,制造设备及制程方法、制程能力,各项相关电性参数规格等考虑,订正了如: Ø 各制程层次、线路之间距离、线宽等的规格。 Ø 各制程层次厚度、深度等的规格。 Ø 各项电性参数等的规格。 等规格,以供产品设计者及制程技术工程师等人遵循、参考 56) DHF Dilute HF,一般用来去除native oxide,稀释的HF( Dilute HF) HF:H2O=1:50 57) Die 晶粒 一片芯片(OR晶圆,即Wafer)上有许多相同的方形小单位,这些小单位即称为晶粒。 同一芯片上的每个晶粒都是相同的构造,具有相同的功能,每个晶粒经包装后,可制成一颗颗我们日常生活中常见的IC,故每一芯片所能制造出的IC数量是很可观的。同样地,如果因制造的疏忽而产生的缺点,往住就会波及成百成千个产品。 58) Dielectric 介电材料 介于导电材料之间的绝缘材料。我们常用的介电材料有SiO2,Si3N4,我们需要的介电材料要求:1.良好的stepcoverage ,2.低介电常数, 3.高崩溃电压,4.低应力,5.平坦性好。 介电材料的性质 Ø 良好的Step coverage、低介电常数、平坦性。 Ø 理想保护层的性质 Ø 沉积均匀、抗裂能力、低针孔密度、能抵抗水气及碱金属离子的穿透,硬度佳。 Ø 主要介电材质:SiO2 PSG 与 BPSG Si3N4 59) Dielectric Constant 介电常数. 介电常数是表征电容性能的一重要参数,越小越好,它与导电性能成反比。 £=Cd/S ,C=£S/d 60) Diffusion 扩散 在一杯很纯的水上点一滴红墨水,不久后可发现水表面颜色渐渐淡去,而水面下渐渐染红,但颜色是愈来愈淡,这即是扩散的一例。在半导体工业上常在很纯的硅芯片上以预置或离子植入的方式做扩散源(即红墨水)。因固态扩散比液体慢很多(约数亿年),故以进炉管加高温的方式,使扩散在数小时内完成 61) Diffusion Coefficient 扩散系数 扩散系数是描述杂质在晶体中扩散快慢的一个参数。这与扩散条件下的温度,压强,浓度成正比。 D=D0exp(-Ea/KT) D0是外插至无限大温度所得的扩散系数(cm2/s) Ea是活化能(ev) 在低浓度时,扩散系数对温度倒数为线性关系,而与浓度无关 62) Diffusion Furnace 扩散炉 在半导体工业上常在很纯的硅芯片上以预置或离子植入的方式做扩散源(即红墨水)。因固态扩散比液体慢很多(约数亿年),故以进炉管加高温的方式,使扩散在数小时内完成。这样的炉管就叫做扩散炉。 63) Diffusion Pump 扩散式泵 通过加热油,油气蒸发高速喷射出去,带出气体分子,达到抽气的目的。它可以达到10-5Torr. 64) Dimple 凹痕表面上轻微的下陷或凹陷。 65) DI Water去离子水 IC制造过程中,常需要用酸碱溶液来蚀刻,清洗芯片。这些步骤之后,又须利用水把芯片表面残留的酸碱清除。而且水的用量是相当大。 然而IC工业用水,并不是一般的自来水,而是自来水或地下水经过一系列的纯化而成。原来自来水或地下水中,含有大量的细菌,金属离子及Particle,经厂务的设备将之杀菌过滤和纯化后,即可把金属离子等杂质去除,所得的水即称为"去离子水"。专供IC制造的用。 66) Donor 施体 我们将使原本本征的半导体产生多余电子的杂质,称为施体。如掺入p的情况。 67) Dopant 掺杂 在原本本征的半导体里主动的植入或通过扩散的方法将其它的原子或离子掺入进去,达到改变其电性能的方法。如离子植入。 68) Dopant Drive in 杂质的赶入 我们离子植入后,一般植入的离子分布达不到我们的要求,我们通过进炉管加高温的方式将离子进行扩散,以达到我们对离子分布的要求,同时对离子植入造成的缺陷进行修复。 69) Dopant Source掺杂源 我们将通过扩散的方法进行掺杂的物资叫掺杂源,例如将Poly里掺入P的POCl3我们将其叫 掺杂源。 70) Doping掺入杂质 为使组件运作,芯片必须掺以杂质,一般常用的有: 1.预置: 在炉管内通以饱和的杂质蒸气,使芯片表面有一高浓度的杂质层,然后以高温使杂质驱入,扩散;或利用沉积时同时进行预置。 2.离子植入: 先使杂质游离,然后加速植入芯片。 71) Dosage 剂量 表示离子数的一个参数。 72) DRAM, SRAM动态,静态随机存取内存 随机存取记忆器可分动态及静态两种,主要的差异在于动态随机存取内存(DRAM),在一 段时间(一般是0.5ms~5ms)后,数据会消失,故必须在数据未消失前读取原数据再重写(refresh),此为其最大缺点,此外速度较慢也是其缺点。而DRAM的最大好处为,其每一记忆单元(bit)只需一个Transistor(晶体管)+一个Capacitor(电容器),故最省面积,而有最高的密度。而SRAM则有不需重写、速度快的优点,但是密度低,其每一记忆单元(bit)有两类: 1. 需要六个Transistor(晶体管) 2. 2﹒四个Transistor(晶体管)+两个Load resistor(负载电阻)。 由于上述它优缺点,DRAM一般皆用在PC(个人计算机)或其它不需高速且记忆容量大的记忆器,而SRAM则用于高速的中大型计算机或其它只需小记忆容量,如:监视器(Monitor)、打印机(Printer)等周控制或工业控制上。 73) Drain 汲极 通过掺杂,使其电性与底材P-Si相反的,我们将其称为汲极与源极。 74) Drive In 驱入 离子植入(ion implantation)虽然能较精确地选择杂质数量,但受限于离子能量,无法将杂质打入芯片较深(um级)的区域,因此需借着原子有从高浓度往低浓度扩散的性质,在相当高的温度去进行,一方面将杂质扩散到较深的区域,且使杂质原子占据硅原子位置,产生所要的电性,另外也可将植入时产生的缺陷消除。此方法称的驱入。此法不再加入半导体杂质总量,只将表面的杂质往半导体内更深入的推进。 在驱入时,常通入一些氧气﹒因为硅氧化时,会产生一些缺陷,如空洞(Vacancy),这些缺陷会有助于杂质原子的扩散速度。另外,由于驱入是藉原子的扩散,因此其方向性是各方均等,甚至有可能从芯片逸出(out-diffusion),这是需要注意的 75) Dry Oxidation 干式氧化 在通入的气体中只有氧气与载气,只有氧气与底材发生氧化反应。我们将这种氧化叫干式氧化。 如我们的Gate-OX,这种方法生成的SiO2质量比较好,但生成速度比较慢。 76) Dry pump Ø Dry pump是最基本的真空pump,它是利用螺杆原理来工作的,它主要的特点是可以从大气压下直接开始抽气,所以可以单独使用。 Ø 一般真空度要求不高(E-3torr以下)如CVD及furnace仅使用dry pump即可 Ø 特点:Fewer moving parts Higher Reliability Less complexity High speed 77) Dummy Wafer 挡片 对制程起一定辅助作用的硅片,区别于产品、控片,一般对其质量要求不是很高。 1)由于炉管的两端温度不稳定,气体的流量不稳定,所以我们在Boat的两端放入不是产品 的硅片,我们将这样的硅片叫挡片。 2)离子植入若产品不足,则需补上非产品的硅片,即挡片 78) Electron/Hole电子/电洞 电子是构成原子的带电粒子,带有一单位的负电荷,环绕在原子核四周,形成原子。 电洞是晶体中,在原子核间的共享电子,因受热干扰或杂质原子取代,电子离开原有的位置所遗留下来的"空缺" 因缺少一个电子,无法维持电中性, 可视为带有一单位的正电荷。 79) Electrical Breakdown 电崩溃 当NMOS的沟道缩短,沟道接近汲极地区的载子将倍增,这些因载子倍增所产生的电子,通常吸往汲极,而增加汲极电流的大小,部分电子则足以射入闸氧化层里,而产生的电洞,将流往低材,而产生底材电流;另一部分的电洞则被源极收集,使npn现象加强,热电子的数量增加,足使更多的载子倍增,当超过闸极氧化层的承受能力时,就击穿闸氧化层,我们将这种现象叫电崩溃。 80) Electromigration电子迁移 所谓电子迁移,乃指在电流作用下的金属。此系电子的动量传给带正电的金属离子所造成的。当组件尺寸愈缩小时,相对地电流密度则愈来愈大;当此大电流经过集成电路中的薄金属层时,某些地方的金属离子会堆积起来,而某些地方则有金属空缺情形,如此一来,堆积金属会使邻近的导体短路,而金属空缺则会引起断路。材料搬动主要原动力为晶界扩散。以溅镀法所沉积的Al,经过适当的Anneal之后,通常是以多晶(Poly-Crystalline)形式存在,当导电时,因为电场的影响,Al原子将沿着晶粒界面(Grain-Boundary)移动。 有些方法可增加铝膜导体对电迁移的抗力,例如:加入抗电移能力较强的金属,如Cu
82) EM(Electron Migration Test)电子迁移可靠度测试 当电流经过金属导线,使金属原子获得能量,沿区块边界(Grain Boundaries)扩散(Diffusion),使金属线产生空洞(Void),甚至断裂,形成失效。 83) Energy能量 能量是物理学的专有名词。 如下图,B比A的电压正l00伏,若在A板上有一电子受B板正电吸引而加速跑到B板,这时电子在B板就比在A板多了100电子伏特的能量。 |