激光雷达具备独特的优点,如极高的距离分辨率和角分辨率、速度分辨率高、测速范围广、能获得目标的多种图像、抗干扰能力强、比微波雷达的体积和重量小等。这使得激光雷达能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。 .YjrV+om1
B3cf] S%
自1961年科学家提出激光雷达的设想,历经 40余年,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,进而研发出不同用途的激光雷达,如精密跟踪激光雷达、侦测激光雷达、侦毒激光雷达、靶场测量激光雷达、火控激光雷达、导弹制导激光雷达、气象激光雷达、水下激光雷达、导航激光雷达等。激光雷达已成为一类具有多种功能的系统。目前,激光雷达在低空飞行直升机障碍物规避、化学和生物战剂探测和水下目标探测等军事领域方面已进入实用阶段,其它军事应用研究亦日趋成熟。它在工业和自然科学领域的作用也日益显现出来。 $d2kHT
;h,R?mU
微波雷达接收的信号大多数情况下为目标物的反射信号,而激光雷达可以接收反射信号,也可以接收弹性散射信号,如瑞利散射( Rayleigh scattering) 、米散射( Mie scattering) 信号、共振散射信号( resonancescattering) 、荧光信号( fluorescence) 及拉曼散射信号( Raman scattering) 。 *dG}R#9Nv
u 5Eo
激光雷达三维成像 cZaF
f?]k
+U+aWk
激光雷达系统主要由激光发射部分(脉冲激光器)、光子接收部分(望远镜)、光子检测采集部分(后续光路系统和信号检测采集系统)三个基本部分组成。激光器向空中发射激光脉冲,该激光脉冲在向上传播的过程中不断与大气中原子分子发生相互作用,一旦该脉冲进入望远镜的视场,则相互作用产生的回波将被望远镜接收,该信号经过检测和处理后即可得到激光雷达回波信号。 OK
M\"A4
`CAG8D
军事领域应用 jiwpDB&