揭秘量子反常霍尔效应:电子运动的交通规则
微观世界的运行由量子力学规律支配,会显示出完全不同于宏观世界的现象。当前,能够在宏观尺度显示量子力学效应的量子材料是物理学、材料科学、电子学、量子信息等学科共同关注的焦点,有可能会推动材料、信息、能源等技术的革命性发展。刚刚落幕的国家科学技术奖励大会上,由我国科学家薛其坤、王亚愚、何珂、马旭村、吕力为代表的研究团队完成的“量子反常霍尔效应的实验发现”项目,获得2018年度国家自然科学奖一等奖。 这项研究成果是世界物理学界近20年来最重要的实验发现之一,成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命的进程。 量子反常霍尔现象因何能成为物理学研究皇冠上的明珠?它的发现究竟具有怎样的科学、社会、经济意义?请听项目负责人、中国科学院院士、清华大学副校长薛其坤怎么说。 ![]() 矛盾的研究 要实现反常霍尔效应量子化,所需要的实验材料必须同时满足3个几乎相互矛盾的严苛条件,这几乎是不可能完成的任务 如何让量子霍尔效应出现反常?这是过去30多年里,凝聚态物理和材料物理领域最具挑战的实验之一。因为,要实现这一目标,所需要的实验材料必须同时满足3个严苛条件。 简单来说,就是要让导体同时实现“磁性的”“拓扑的”“绝缘的”。而这3个条件之间常常是相互矛盾的,如果有磁性,做到绝缘不容易;相反如果绝缘,磁性很可能就消失了。“这就好比一个运动员,既要有速度又要有力量还要有技巧,这几乎是不可能完成的任务。”清华大学物理系主任王亚愚说。 幸运的是,2006年,一种新型材料——拓扑绝缘体的出现,让全球物理学家们看到了希望。 “拓扑绝缘体是一种新型量子材料,它的内部是绝缘的,但在它的边界或表面总存在导电的边缘态。”王亚愚解释说。 这种神奇材料的构想最初是张首晟与美国另外两位科学家共同提出的。后来,张首晟通过与中国科学院物理所和清华大学的合作,把拓扑绝缘体研究带到了中国。 2009年,张首晟团队提出了将Bi2Se3、Bi2Te3、Sb2Te3掺入3d磁性元素,实现磁性拓扑绝缘体的方案,并做了具体的解析计算。随后,张首晟又与方忠、戴希开展合作,认证了该系统乃是磁性拓扑绝缘体,是实现量子反常霍尔效应的理想材料。 这一系列的理论工作,引起了国内外实验物理学家的广泛关注。从此,一场轰轰烈烈的国际竞赛开始了。 但是,要想真正在实验室制作出理想的拓扑绝缘体材料,是一个世界级的科学难题。薛其坤解释说,实验要求做出高纯度的单晶材料,100万个原子中最多只允许出现一个杂质。而且,实验要求做出极其平整的拓扑绝缘体,材料只能是5纳米(1纳米等于百万分之一毫米)厚,表面凹凸1纳米都不行。 当时,国际上已有多支顶尖团队开展相关研究,而薛其坤团队在人员、资金、经验方面都不占优势。在此情况下,薛其坤作为团队负责人展现出一名科学家应有的沉着冷静——他对团队成员进行了合理分工:自己带队去研究制作高质量的拓扑绝缘体薄膜,王亚愚则负责反常霍尔效应的测量。 在拓扑绝缘体研究初期,薛其坤敏锐地意识到,拓扑绝缘体材料的生长动力学与自己长期从事的砷化镓研究具有非常类似的地方。材料的生长动力学是描述如何从一个个原子的反应最后形成一个宏观晶体材料的过程。因此,只有掌握了材料的生长动力学,才能精确控制材料的生长,进而精确控制材料的质量。 在团队成员共同努力下,仅用了三四个月,他们就在国际上率先建立了拓扑绝缘体薄膜的分子束外延生长动力学,实现了对样品生长过程原子水平上的精确控制。这也帮助成功研制磁性拓扑绝缘体薄膜迈出了重要坚实的一步。 完美的成果 在1881年发现反常霍尔效应100多年后,中国科学家终于实现了其量子化——而且实验结果干净漂亮,数据完美得几乎不可思议 |