自由曲面光学是
照明行业在
光线重定向到目标区域方面的改变者。非均匀有理B样条,通常称为NURBS广泛用于表示自由曲面和曲面。有一些
光学系统需要在设计或
优化阶段对表面进行局部修饰。在这种情况下,NURBS不能提供这种转换。但是一个叫做T-splines的新数学表达式使得这是可行的。虽然它的潜力已被很好地描述,但迄今为止尚未在任何优化程序中实施。Annie Shalom Isaac,来自卡尔斯鲁厄理工学院的Jiayi Long和Cornelius Neumann通过在优化程序中执行T型样条证明了局部细化能力的优势,并对结果进行了评估。结果表明,与NURBS相比,T样条提供更均匀和均匀的光分布,且收敛速度更快。这使得使用T样条的
光学设计或优化成为未来自由形式设计任务的直观方法。
t%Y}JKLR RD*.n1N1
hx@E, 3x3 OFFD栅格在(左)和(右)变形之前和之后包围和光学表面
p2m`pT 自由形式光学器件的设计在很大程度上依赖于以下方法之一:基于点源假设[3],SMS设计[4]和基于等通量网格[5]的源目标图的裁剪以创建初始光学表面。由于这些数学方法不能保证为扩展的
LED光源提供准确的结果,也不能提供通用的解决方案,光学设计师仍然依靠任何优化工具来改善结果。光线跟踪算法中的速度提高以及复杂的智能优化算法使优化方法的应用更加广泛。但自由曲面优化的缺点主要是由于其复杂的数学表达和许多
参数的存在。
mmEe@-lE wpm $?X Wendel et.al提出了一种称为优化的方法,使用自由形变(OFFD)来克服这一困难,将光学表面置于网格中并使封闭的网格变形而不是直接作用于网格[1]。这种方法使用NURBS来表示光学表面,其结果表明,使用较少的优化变量,它们可以很好地实现全局变形,这使得制造更容易。但是有些情况下需要在光线分布上有明显的倾斜,或者光线的路径必须显着改变。在这种情况下,轻微的局部变形会带来显着的改善。但是对于目前的OFFD,这是不可能的,因为下面的表面表示。称为T样条的另一种表面表示法可以克服这个缺点[2]。Bailey等人。al已经证明了T-splines的潜力及其在光学表面的应用[6]。但是迄今为止,这种方法既未应用于任何优化程序,也未对其光学性能进行分析并与NURBS进行比较。
ybgw#jv= 因此,这项工作考虑了这个问题,并提供了解决这个问题的替代方法。第2部分介绍了OFFD技术。光学表面的数学表面表示在第3节中介绍.T样条的实现结果和比较结果在第4节中显示,随后在第5节中给出结论。
$2k9gO y Xi$w.gr 使用OFFD进行优化OFFD方法采用Sederberg [7]提出的自由变形(FFD)技术,并结合优化程序。网格和光学表面之间的关系使用FFD算法很好地建立[7]。图1显示了在变形之前和之后具有光学表面的网格。为了简洁起见,只介绍OFFD方法的概述。
97VS
xhr g0RfvR
<