清华大学量子纠缠实现突破,意味着什么?
未来不仅通过量子接口可以实现量子通信和量子互联网的联网,而且通信和网速将极大提高。近日,清华大学交叉信息研究院段路明教授研究团队宣布其在量子信息领域取得重要进展,首次实现25个量子接口之间的量子纠缠。该成果的研究论文已在4月20日出刊的美国《科学》杂志子刊《科学进展》刊载。 这项成果的发布意味着什么呢? 即有了更高效率的量子接口,它用于实现量子信息在传递粒子(光子)和存储粒子(通常为原子)之间相互转化,是连接量子存储器或量子计算单元与光量子通信通道间的重要界面。因此,量子接口也是量子通信(领域)中的一个基本元器件。 量子是指能表现出某物质或物理量特性的最小单元。粒子又是指能够以自由状态存在的最小物质组成部分。因此,物理学上把由两个或两个以上粒子组成系统中相互影响的现象称为量子纠缠。 纠缠就是最小的物质,如粒子(光子)、原子之间的接触、叠加、缠绕,也即信息传递和交流,正因为有这样的交流,可以让量子通信、量子计算机、量子互联网得以实现。 瞬时转移有了“接口” 量子纠缠需要量子接口,但是首先要保证不同类型的粒子可以互相纠缠在一起,才能进行量子信息的传播,而且量子接口越大,就越能接入更多信息并进行量子交流,从而扩大量子网络的规模。 段路明团队通过光束复分技术,通过实验首次实现了25个量子接口之间的量子纠缠,比此前最高纪录的4个量子接口之间的纠缠提高了约6倍。这也意味着未来不仅通过量子接口可以实现量子通信和量子互联网的联网,而且通信和网速将极大提高。 从人类通信史来看,从电话线上网(尽管是宽带)到光纤已经是一个飞跃,速度和流量也只提升数百倍而已。但如果用上量子通信,传输效率就要比5G的光纤信道高出上亿乃至万亿倍。 |