切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 622阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    4729
    光币
    18021
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 F nXm;k,9*  
    !J<Xel {  
    成像示意图
    %a WRXW@c  
    首先我们建立十字元件命名为Target  iY$iL<  
    1uN;JN `_  
    创建方法: j3;W-c`5  
    ut\ X{.r7  
    面1 : ``k[CgV  
    面型:plane f~\H|E8(  
    材料:Air LEP TL#WT1  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box F"k`PF*b  
    9v`sSTlSd  
    YcX"Z~O6j=  
    辅助数据: \ui'~n_t]  
    首先在第一行输入temperature :300K, l$\B>u,>  
    emissivity:0.1;  c`\/]  
    G.<0^q,  
    1}Q9y`65  
    面2 : =|aZNHqH  
    面型:plane ()Kaxcs?+  
    材料:Air Ul /m]b6-  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box  OM1{-W  
    FCEmg0qdjD  
    'A.5T%n-  
    位置坐标:绕Z轴旋转90度, $Z]@N nA9N  
    Qd YYWD   
    aWJ BYw6{L  
    辅助数据: NYP3u_ QX  
    h M7 SGEV  
    首先在第一行输入temperature :300K,emissivity: 0.1; 4hxP`!<  
    BWxJ1ENM  
    ![ce }  
    Target 元件距离坐标原点-161mm; _[z)%`kay  
    WHBGhU  
    C=r`\W  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 N [3Y~HX!q  
    (_ :82@c  
    H!7?#tRU  
    探测器参数设定: *,CJ 3< >  
    #z&R9$  
    在菜单栏中选择Create/Element Primitive /plane 0n6eWwY  
    :Bt,.uN C  
    ^j${#Q  
    HAI) +J   
    WO9vOS>  
    q?mpvpL G  
    元件半径为20mm*20,mm,距离坐标原点200mm。 fi>.X99(G  
    O>h h  
    光源创建: B,_K mHItd  
    5EQ)pH+  
    光源类型选择为任意平面,光源半角设定为15度。 D=z="p\  
    M0lJyz J  
    u(8{5"C  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 "@ ^<~bw  
    ~= c 5q  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 ]U'zy+  
    =|Qxv`S1  
    &F :.V$  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Hs8JJGXWB  
    Ih.)iTs~%  
    创建分析面: C.#Ha-@uz  
    H'udxPF  
    $eT[`r  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ^pu8\K;~  
    %pOxt<  
    RAu(FJ  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 *a\x!c"  
    ~a2|W|?  
    FRED在探测器上穿过多个像素点迭代来创建热图 W0mvwYON[  
    e<=Nd,v4;  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 VByA6^JR  
    将如下的代码放置在树形文件夹 Embedded Scripts, &F#eYEuy  
    $-pijBiz_  
    vv2[t  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 $v2t6wS,"  
    zi`q([  
    绿色字体为说明文字, AU)\ lyB  
    :oW 16m1`  
    '#Language "WWB-COM" "AXgT[ O  
    'script for calculating thermal image map S2|pn\0V  
    'edited rnp 4 november 2005 XaE*$:   
    'L7u`  
    'declarations zBq&/?  
    Dim op As T_OPERATION w{_g"X  
    Dim trm As T_TRIMVOLUME LU8[$.P  
    Dim irrad(32,32) As Double 'make consistent with sampling A =Z$H2  
    Dim temp As Double 0S>L0qp  
    Dim emiss As Double YR/I<m`]}  
    Dim fname As String, fullfilepath As String !PeSnO  
    o/a2n<4  
    'Option Explicit )sK53O$  
    wBw(T1VN  
    Sub Main vpT\ CjXHZ  
        'USER INPUTS F?FfRzZ[  
        nx = 31 z#`Qfvu6Hi  
        ny = 31 |N6.:K[`  
        numRays = 1000 Crj7n/mp]s  
        minWave = 7    'microns GNuIcy  
        maxWave = 11   'microns ' e!WZvr  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 h$9ut@I  
        fname = "teapotimage.dat" =a+  } 6  
    9dAtQwGR"6  
        Print "" 0uM&F[.x@g  
        Print "THERMAL IMAGE CALCULATION" ci2Z_JA+  
    M,kO7g  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 HEc.3   
    3Ur_?PM+C  
        Print "found detector array at node " & detnode ojm IEzsz  
    Fkpaou  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 H0])>1sWB  
    ! N!pvK;  
        Print "found differential detector area at node " & srcnode .)bNi*&  
    .w{Y3,dd>  
        GetTrimVolume detnode, trm ,H.5TQ#  
        detx = trm.xSemiApe P4{~fh(  
        dety = trm.ySemiApe ]o=ON95ja  
        area = 4 * detx * dety P{n*X  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety ] `q]n  
        Print "sampling is " & nx & " by " & ny {' 0#<Z  
    )/Eu=+d  
        'reset differential detector area dimensions to be consistent with sampling Pe\Obd8d  
        pixelx = 2 * detx / nx $~1mKx]]  
        pixely = 2 * dety / ny !kb:g]X  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False c1a$J`  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Tjv'S <  
    E>5p7=Or;"  
        'reset the source power -L6CEe  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) >O rIY  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" PrfG  
    i0+e3!QU  
        'zero out irradiance array [kxOv7a  
        For i = 0 To ny - 1 R6;#+ 1D  
            For j = 0 To nx - 1 L{r4hL [  
                irrad(i,j) = 0.0 *2vp2xMA@  
            Next j W,80deT  
        Next i 0T(+z)Ki  
    zd!%7 UP  
        'main loop n=$ne2/  
        EnableTextPrinting( False ) 4]p#9`j  
    P?|\Ig1Gk  
        ypos =  dety + pixely / 2 <Ist^ h+o  
        For i = 0 To ny - 1 jC}HNiM78  
            xpos = -detx - pixelx / 2 d2gYB qag  
            ypos = ypos - pixely Dic|n@_Fy  
    {dRZ2U3  
            EnableTextPrinting( True ) T=sAy/1oR  
            Print i ' i5KRFy-  
            EnableTextPrinting( False ) tk h *su  
    0QfDgDX  
    H%rNQxA2 +  
            For j = 0 To nx - 1 .b<W*4{j0H  
    EH M59s|B  
                xpos = xpos + pixelx ~&MDfpl  
    J#i7'9g  
                'shift source ln8NcAEx  
                LockOperationUpdates srcnode, True 0} &/n>F  
                GetOperation srcnode, 1, op Ac|dmu  
                op.val1 = xpos p-EU"O  
                op.val2 = ypos Lr8|S  
                SetOperation srcnode, 1, op T KAs@X,t  
                LockOperationUpdates srcnode, False OUGkam0UK  
    \.H9e/vU`  
    raytrace -D=Sj@G  
                DeleteRays C%]qK(9vvd  
                CreateSource srcnode f`/('}t  
                TraceExisting 'draw hjFht+j1  
    X?< L<:.  
                'radiometry SVn@q|N  
                For k = 0 To GetEntityCount()-1 kb/BE J  
                    If IsSurface( k ) Then HOPy&Fp  
                        temp = AuxDataGetData( k, "temperature" ) VX8CEO  
                        emiss = AuxDataGetData( k, "emissivity" ) |Z2"pV  
                        If ( temp <> 0 And emiss <> 0 ) Then yx4pQL7  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) N#e9w3Rli  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) hqjjd-S0  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi e?+-~]0  
                        End If n9J{f"`m  
    i+~BVb  
                    End If tQNrDp+  
    5*YvgB;  
                Next k 2@2d |  
    '2<r{  
            Next j > .K%W *t  
    MOCcp s*  
        Next i +By'6?22  
        EnableTextPrinting( True ) HKT, 5  
    ZOa|lB (,  
        'write out file {y6h(@I8\  
        fullfilepath = CurDir() & "\" & fname &V (6N%A^U  
        Open fullfilepath For Output As #1 BU??}{  
        Print #1, "GRID " & nx & " " & ny Ma$~B0!;s  
        Print #1, "1e+308" $)o0{HsL+  
        Print #1, pixelx & " " & pixely ?#Z4Dg 9|  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 2=8PA/  
    2YW;=n  
        maxRow = nx - 1 q jc4IW t~  
        maxCol = ny - 1 lA/-fUA  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) D^.  c:  
                row = "" pXN'vP  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Jx}-Y* o  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string \6?a  
            Next colNum                     ' end loop over columns {R@V  
    m26YAcip}  
                Print #1, row nC%qdzT  
    Z/?{{}H+  
        Next rowNum                         ' end loop over rows {xov8 M  
        Close #1 (Y7zaAG]  
    <y^_&9  
        Print "File written: " & fullfilepath J9]cs?`)  
        Print "All done!!" Rky]F+J  
    End Sub a4 N f\7  
    HNBmq>XDc  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: >J S^yVk  
    ZnI15bsDx  
    u|Mx}  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 1eshuL  
      
    g([:"y?  
    LFHJj-nk  
    打开后,选择二维平面图: -mRgB"8  
    0<~~0US  
     
    分享到