超强超快激光的特点与发展
超强超快激光科学是一门非常年轻的新学科,正处在出现重大突破的前夜。
近年来,超强超快激光与高温高密度等离子体的相互作用,特别是相对论效应引起的高度非线性新现象、新规律的研究,也已引起国际学术界的高度重视。虽然目前已观测到超强超快激光产生巨大光压,推动临界密度面向前移动,从而形成等离子体通道等新现象,但涉及到1018~1020瓦/厘米2数量级的超强超快激光与高温高密度等离子体的相互作用,如“等离子体中凿孔”效应、超热电子的产生、能谱控制与输运等基础性物理问题还有待于深入研究。显然,超强超快激光与高温高密度等离子体相互作用的研究不仅是本领域的重要研究内容之一,而且还有可能为激光核聚变等相关高技术领域的发展提供基础。 超强超快激光场激励的高次谐波现象的发现与不断深入的研究,不仅为获得真空紫外区(VUV)与极端紫外区(XUV)波段全相干光源提供了一种有效途径,也为亚飞秒甚至阿秒级极端超快短波长相干辐射的产生提出了全新的思想与方法,从而有可能突破飞秒的壁垒,为人类创建极端超快的阿秒光子技术,并开创出阿秒光谱学、阿秒物理学乃至阿秒科学技术的全新学科与未来高技术领域。 超强超快激光场中高次谐波发射研究已取得重大突破,高次谐波已进入“水窗”波段。 当前,产生亚飞秒乃至阿秒数量级极端超快相干辐射的新概念、新方法的研究,正日趋活跃。在短波长X射线波段激光研究方面,现有的X射线激光机制无法实现波长小于2纳米的突破,超强超快激光的出现为实现基于内壳层跃迁等新机制的超短波长相干辐射提供了可能性。目前超强超快激光驱动的内壳层光电离超短波长相干辐射新机制研究也已成为本领域的新热点。 为交叉学科的发展提供创新手段与方法 超强超快激光技术也为超快化学动力学、微结构材料科学、超快信息光子学与生命科学等前沿交叉学科的发展提供了创新手段与方法。例如,超强超快激光自身及其与物质相互作用产生的飞秒甚至可能是亚飞秒、阿秒数量级的XUV和 X射线波段的极端超快相干光源技术,为人类研究并应用各种超快过程提供了强有力的手段,将使人类在更深的层次上进一步认识微观世界物质内部的能量转移和信息传递过程,进而可能实现人工控制某些物理、化学和生物过程,促进微结构材料科学、超快化学动力学等交叉学科领域的研究与发展,产生具有重大影响的突破性交叉前沿研究成果。 近年,在飞秒激光应用于化学反应动力学方面的研究进展格外引人注目。泽韦尔(A.H.Zewail)由于在发展飞秒光谱技术,并研究化学反应过程中寿命极短的过渡态方面的成就,被授予1999年度诺贝尔化学奖。上述进展也为利用超快强激光控制化学反应带来了新的希望。有选择地断裂或形成一些小分子化学键已经成功,但是对大分子复杂体系却一直未能突破。超快强激光技术与近场光学显微技术相结合,可以对激光与分子的相互作用进行多维控制,这是研究“单分子物理学”或“单分子化学”的有力手段,并有可能用以对生物大分子进行“剪裁”。 超快强激光在物质微结构的制备与超快动力学行为的研究方面,包括超高时空光谱分辨新探测手段的开拓与应用也取得了显著进展。如光泵-超快X射线衍射探针测量技术应用于单晶的超快晶格动力学研究已经实现了皮秒-毫埃的超高时空分辨率;微爆炸和微聚合已使得人们有可能用超快强激光得到优于衍射极限、小于光波长的材料处理精度, 在三维高密度数据存储中带来了新的应用。最近的实验也已证实,利用飞秒强激光按微米的间隔,断续照射含稀土元素钐微粒子的玻璃,加上多重波长重叠记录技术,记录密度可提高到1014比特/厘米3等。 中国科学家取得的重要进展 中科院上海光机所从1980年代中期起,在国家自然科学基金重大项目、中国科学院重大项目等支持下,在国内率先开展了强场激光条件下的激光与物质相互作用研究,包括在电离阈值以上原子的多光子电离,强场诱导原子的自电离和其他重要的强场量子现象,以及超强超快激光脉冲在等离子体中的传输、频率上转换、高次谐波辐射及等离子体电子加速器等方面的系统研究,受到国际同行的高度评价。 |

1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn